Journal of CO2 Utilization ( IF 7.2 ) Pub Date : 2022-06-21 , DOI: 10.1016/j.jcou.2022.102107 Yupeng Chen , Chong Chen , Xue Li , Nengjie Feng , Lei Wang , Hui Wan , Guofeng Guan
Catalytic fixation of greenhouse gas CO2 into value-added chemicals under mild conditions was deemed as an effective pathway for carbon emissions mitigation, though facing big challenges. Herein, a novel hydroxyl-ionic liquid functionalized metalloporphyrin (ZnTpyp-IL) catalyst bearing hydrogen bond donor (HBD), Lewis acidic and nucleophilic sites was fabricated and invested in the CO2 cycloaddition without additive or solvent. The integration of ionic liquid endowed the framework with strong surface affinity to enrich CO2 molecules, while the cooperative interplay of multiple active sites further promoted the high-selective conversion of epichlorohydrin (ECH). Under optimal conditions (100 °C, 1 MPa, 4 h), the yield of corresponding chloropropene carbonate (CPC) reached 97.1 % (turnover frequency (TOF) = 52.4 h-1), far superior to that of bare Tpyp (17.4 %). The preliminary kinetic studies revealed the lower activation energy (59.54 kJ/mol) needed to be overcome in the ring-opening process over ZnTpyp-IL. Moreover, a plausible dual-activation mechanism of hydrogen bonds and Zn centers for epoxides was proposed based on the density functional theory calculation (DFT) to explain the acceleration of rate-determining step. Coupled with the satisfactory reusability and substrate expansibility, the developed ZnTpyp-IL demonstrated its great potential as robust heterogeneous catalyst in the efficient utilization of C1 resource.
中文翻译:
羟基离子液体功能化金属卟啉作为一种高效的多相催化剂,用于 CO2 与环氧化物的协同环加成反应
尽管面临巨大挑战,但在温和条件下将温室气体 CO 2催化固定为增值化学品被认为是减缓碳排放的有效途径。在此,制备了一种新型羟基离子液体功能化金属卟啉 (ZnTpyp-IL) 催化剂,该催化剂具有氢键供体 (HBD)、路易斯酸性和亲核位点,并在没有添加剂或溶剂的情况下投入到 CO 2环加成反应中。离子液体的整合赋予骨架强表面亲和力以富集CO 2分子,而多个活性位点的协同相互作用进一步促进了环氧氯丙烷(ECH)的高选择性转化。在最佳条件下(100 ℃、1 MPa、4 h),相应的氯丙烯碳酸酯(CPC)收率达到97.1%(周转频率(TOF)=52.4 h -1),远远优于裸 Tpyp (17.4 %)。初步动力学研究表明,在 ZnTpyp-IL 的开环过程中需要克服较低的活化能 (59.54 kJ/mol)。此外,基于密度泛函理论计算(DFT),提出了环氧化物氢键和Zn中心的双活化机制来解释速率决定步骤的加速。再加上令人满意的可重复使用性和底物可扩展性,所开发的 ZnTpyp-IL 在高效利用 C 1资源方面显示出其作为稳健多相催化剂的巨大潜力。