随着人工智能和传感器技术的快速发展,基于脑电图(EEG)的情绪识别受到广泛关注。各种深度神经网络已经应用到它上面,并在分类精度上取得了优异的成绩。除了分类准确度外,特征提取过程的可解释性对于情感识别的模型设计也很重要。在这项研究中,我们通过探索情绪识别对每个 EEG 通道的依赖性并可视化捕获的特征,提出了一种新的神经网络模型 (DCoT),该模型具有深度卷积和 Transformer 编码器,用于基于 EEG 的情绪识别。然后,我们在基准数据集 SEED 上进行主题相关和独立于主题的实验,其中包含正面、中性和负面情绪的 EEG 数据。对于依赖于主题的实验,三个分类任务的平均准确率为 93.83%。对于与主题无关的实验,三个分类任务的平均准确率为 83.03%。此外,我们通过 DCoT 模型评估每个 EEG 通道在情绪活动中的重要性,并将其可视化为脑图。此外,在两个分类任务和三个分类任务中,利用八个选定的关键 EEG 通道:FT7、T7、TP7、P3、FC6、FT8、T8 和 F8,获得了令人满意的结果。使用少量脑电通道进行情绪识别,可以降低设备成本和计算成本,适合实际应用。三个分类任务的平均准确率为 83.03%。此外,我们通过 DCoT 模型评估每个 EEG 通道在情绪活动中的重要性,并将其可视化为脑图。此外,在两个分类任务和三个分类任务中,利用八个选定的关键 EEG 通道:FT7、T7、TP7、P3、FC6、FT8、T8 和 F8,获得了令人满意的结果。使用少量脑电通道进行情绪识别,可以降低设备成本和计算成本,适合实际应用。三个分类任务的平均准确率为 83.03%。此外,我们通过 DCoT 模型评估每个 EEG 通道在情绪活动中的重要性,并将其可视化为脑图。此外,在两个分类任务和三个分类任务中,利用八个选定的关键 EEG 通道:FT7、T7、TP7、P3、FC6、FT8、T8 和 F8,获得了令人满意的结果。使用少量脑电通道进行情绪识别,可以降低设备成本和计算成本,适合实际应用。在两个分类任务和三个分类任务中。使用少量脑电通道进行情绪识别,可以降低设备成本和计算成本,适合实际应用。在两个分类任务和三个分类任务中。使用少量脑电通道进行情绪识别,可以降低设备成本和计算成本,适合实际应用。
"点击查看英文标题和摘要"
A Transformer based neural network for emotion recognition and visualizations of crucial EEG channels
With the rapid development of artificial intelligence and sensor technology, electroencephalogram-based (EEG) emotion recognition has attracted extensive attention. Various deep neural networks have been applied to it and achieved excellent results in classification accuracy. Except for classification accuracy, the interpretability of the feature extraction process is also considerable for model design for emotion recognition. In this study, we propose a novel neural network model (DCoT) with depthwise convolution and Transformer encoders for EEG-based emotion recognition by exploring the dependence of emotion recognition on each EEG channel and visualizing the captured features. Then we conduct subject-dependent and subject-independent experiments on a benchmark dataset, SEED, which contains EEG data of positive, neutral, and negative emotions. For subject-dependent experiments, the average accuracy of three classification tasks is 93.83%. For subject-independent experiments, the average accuracy of three classification tasks is 83.03%. Additionally, we assess the importance of each EEG channel in emotional activities by the DCoT model and visualize it as brain maps. Furthermore, satisfactory results are obtained by utilizing eight selected crucial EEG channels: FT7, T7, TP7, P3, FC6, FT8, T8, and F8, both in two classification tasks and three classification tasks. Using a small number of EEG channels for emotion recognition can reduce equipment costs and computing costs, which is suitable for practical applications.