Nature Communications ( IF 14.7 ) Pub Date : 2022-06-18 , DOI: 10.1038/s41467-022-31274-8
Jin-Peng Xue 1 , Yang Hu 1 , Bo Zhao 1 , Zhi-Kun Liu 1 , Jing Xie 1 , Zi-Shuo Yao 1 , Jun Tao 1
|
Host-guest interactions play critical roles in achieving switchable structures and functionalities in porous materials, but design and control remain challenging. Here, we report a two-dimensional porous magnetic compound, [FeII(prentrz)2PdII(CN)4] (prentrz = (1E,2E)−3-phenyl-N-(4H-1,2,4-triazol-4-yl)prop-2-en-1-imine), which exhibits an atypical pore transformation that directly entangles with a spin state transition in response to water adsorption. In this material, the adsorption-induced, non-uniform pedal motion of the axial prentrz ligands and the crumpling/unfolding of the layer structure actuate a reversible narrow quasi-discrete pore (nqp) to large channel-type pore (lcp) change that leads to a pore rearrangement associated with simultaneous pore opening and closing. The unusual pore transformation results in programmable adsorption in which the lcp structure type must be achieved first by the long-time exposure of the nqp structure type in a steam-saturated atmosphere to accomplish the gate-opening adsorption. The structural transformation is accompanied by a variation in the spin-crossover (SCO) property of FeII, i.e., two-step SCO with a large plateau for the lcp phase and two-step SCO with no plateau for the nqp phase. The unusual adsorption-induced pore rearrangement and the related SCO property offer a way to design and control the pore structure and physical properties of dynamic frameworks.
中文翻译:

通过缓慢的结构动力学赋予孔隙可调节行为的自旋交叉框架
主客体相互作用在实现多孔材料的可切换结构和功能方面发挥着关键作用,但设计和控制仍然具有挑战性。在这里,我们报道了一种二维多孔磁性化合物,[Fe II (prentrz) 2 Pd II (CN) 4 ] (prentrz = (1 E ,2 E)−3-苯基-N-(4H-1,2,4-triazol-4-yl)prop-2-en-1-imine),它表现出一种非典型的孔转变,直接与响应的自旋态转变纠缠在一起去吸水。在这种材料中,轴向 prentrz 配体的吸附诱导的非均匀踏板运动和层结构的皱缩/展开驱动可逆的窄准离散孔 (nqp) 到大通道型孔 (lcp) 的变化,导致与同时孔打开和关闭相关的孔重排。不寻常的孔转化导致可编程吸附,其中必须首先通过在蒸汽饱和气氛中长时间暴露nqp结构类型来实现lcp结构类型以完成开门吸附。II,即两步SCO,在lcp阶段有一个大平台,而两步SCO对于nqp阶段没有平台。不寻常的吸附诱导的孔重排和相关的 SCO 特性为设计和控制动态框架的孔结构和物理特性提供了一种方法。