当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Multiphoton Lithography of Organic Semiconductor Devices for 3D Printing of Flexible Electronic Circuits, Biosensors, and Bioelectronics
Advanced Materials ( IF 27.4 ) Pub Date : 2022-06-16 , DOI: 10.1002/adma.202200512 Omid Dadras-Toussi 1 , Milad Khorrami 1 , Anto Sam Crosslee Louis Sam Titus 1 , Sheereen Majd 1 , Chandra Mohan 1 , Mohammad Reza Abidian 1
Advanced Materials ( IF 27.4 ) Pub Date : 2022-06-16 , DOI: 10.1002/adma.202200512 Omid Dadras-Toussi 1 , Milad Khorrami 1 , Anto Sam Crosslee Louis Sam Titus 1 , Sheereen Majd 1 , Chandra Mohan 1 , Mohammad Reza Abidian 1
Affiliation
In recent years, 3D printing of electronics have received growing attention due to their potential applications in emerging fields such as nanoelectronics and nanophotonics. Multiphoton lithography (MPL) is considered the state-of-the-art amongst the microfabrication techniques with true 3D fabrication capability owing to its excellent level of spatial and temporal control. Here, a homogenous and transparent photosensitive resin doped with an organic semiconductor material (OS), which is compatible with MPL process, is introduced to fabricate a variety of 3D OS composite microstructures (OSCMs) and microelectronic devices. Inclusion of 0.5 wt% OS in the resin enhances the electrical conductivity of the composite polymer about 10 orders of magnitude and compared to other MPL-based methods, the resultant OSCMs offer high specific electrical conductivity. As a model protein, laminin is incorporated into these OSCMs without a significant loss of activity. The OSCMs are biocompatible and support cell adhesion and growth. Glucose-oxidase-encapsulated OSCMs offer a highly sensitive glucose sensing platform with nearly tenfold higher sensitivity compared to previous glucose biosensors. In addition, this biosensor exhibits excellent specificity and high reproducibility. Overall, these results demonstrate the great potential of these novel MPL-fabricated OSCM devices for a wide range of applications from flexible bioelectronics/biosensors, to nanoelectronics and organ-on-a-chip devices.
中文翻译:
用于柔性电子电路、生物传感器和生物电子学 3D 打印的有机半导体器件的多光子光刻
近年来,电子产品3D打印因其在纳米电子学和纳米光子学等新兴领域的潜在应用而受到越来越多的关注。多光子光刻 (MPL) 因其出色的空间和时间控制水平而被认为是具有真正 3D 制造能力的最先进的微加工技术。这里,引入了一种与MPL工艺兼容的掺杂有机半导体材料(OS)的均质透明光敏树脂,用于制造各种3D OS复合微结构(OSCM)和微电子器件。在树脂中加入 0.5 wt% OS 可将复合聚合物的电导率提高约 10 个数量级,与其他基于 MPL 的方法相比,所得 OSCM 具有高比电导率。作为模型蛋白,层粘连蛋白被整合到这些 OSCM 中,而活性没有显着损失。 OSCM 具有生物相容性,支持细胞粘附和生长。葡萄糖氧化酶封装的 OSCM 提供了高度灵敏的葡萄糖传感平台,其灵敏度比以前的葡萄糖生物传感器高出近十倍。此外,该生物传感器具有优异的特异性和高重现性。总体而言,这些结果证明了这些新型 MPL 制造的 OSCM 器件具有广泛的应用潜力,从柔性生物电子学/生物传感器到纳米电子学和片上器官器件。
更新日期:2022-06-16
中文翻译:
用于柔性电子电路、生物传感器和生物电子学 3D 打印的有机半导体器件的多光子光刻
近年来,电子产品3D打印因其在纳米电子学和纳米光子学等新兴领域的潜在应用而受到越来越多的关注。多光子光刻 (MPL) 因其出色的空间和时间控制水平而被认为是具有真正 3D 制造能力的最先进的微加工技术。这里,引入了一种与MPL工艺兼容的掺杂有机半导体材料(OS)的均质透明光敏树脂,用于制造各种3D OS复合微结构(OSCM)和微电子器件。在树脂中加入 0.5 wt% OS 可将复合聚合物的电导率提高约 10 个数量级,与其他基于 MPL 的方法相比,所得 OSCM 具有高比电导率。作为模型蛋白,层粘连蛋白被整合到这些 OSCM 中,而活性没有显着损失。 OSCM 具有生物相容性,支持细胞粘附和生长。葡萄糖氧化酶封装的 OSCM 提供了高度灵敏的葡萄糖传感平台,其灵敏度比以前的葡萄糖生物传感器高出近十倍。此外,该生物传感器具有优异的特异性和高重现性。总体而言,这些结果证明了这些新型 MPL 制造的 OSCM 器件具有广泛的应用潜力,从柔性生物电子学/生物传感器到纳米电子学和片上器官器件。