当前位置: X-MOL 学术Found. Trends Inf. Ret. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deep Learning for Dialogue Systems: Chit-Chat and Beyond
Foundations and Trends in Information Retrieval ( IF 8.3 ) Pub Date : 2022-6-15 , DOI: 10.1561/1500000083
Rui Yan , Juntao Li , Zhou Yu

With the rapid progress of deep neural models and the explosion of available data resources, dialogue systems that supports extensive topics and chit-chat conversations are emerging as a research hot-spot for many communities, e.g., information retrieval (IR), natural language processing (NLP), and machine learning (ML). Building a chit-chat system with retrieval techniques is an essential task and has achieved great success in the past few years. The advance of chit-chat systems, in turn, can support extensive IR tasks, e.g., conversational search and conversational recommendation. To facilitate the development of both retrieval-based chit-chat systems and IR tasks supported by these systems, we survey chit-chat systems from two perspectives: (1) techniques to build chit-chat systems, i.e., deep retrieval-based models, generative methods, and their ensembles, and (2) chit-chat components in completing IR tasks. In each aspect, we present cutting-edge neural methods and summarize the core challenges encountered and possible research directions.



中文翻译:

对话系统的深度学习:闲聊及其他

随着深度神经模型的快速发展和可用数据资源的爆炸式增长,支持广泛主题和闲聊对话的对话系统正在成为许多社区的研究热点,例如信息检索(IR)、自然语言处理(NLP) 和机器学习 (ML)。使用检索技术构建聊天系统是一项必不可少的任务,并且在过去几年中取得了巨大成功。反过来,闲聊系统的进步可以支持广泛的 IR 任务,例如会话搜索和会话推荐。为了促进基于检索的聊天系统和这些系统支持的 IR 任务的开发,我们从两个角度调查聊天系统:(1)构建聊天系统的技术,即基于深度检索的模型,生成方法,及其合奏,以及 (2) 完成 IR 任务的闲聊组件。在每个方面,我们都介绍了前沿的神经方法,并总结了遇到的核心挑战和可能的研究方向。

更新日期:2022-06-16
down
wechat
bug