当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
High-Performance Biomechanical Energy Harvester Enabled by Switching Interfacial Adhesion via Hydrogen Bonding and Phase Separation
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2022-06-15 , DOI: 10.1002/adfm.202204304 Lingyun Wang 1 , Yu Wang 2 , Xiangkun Bo 1 , Haoyu Wang 3 , Su Yang 4 , Xiaoming Tao 4 , Yunlong Zi 3 , William W. Yu 5 , Wen Jung Li 1 , Walid A. Daoud 1, 6
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2022-06-15 , DOI: 10.1002/adfm.202204304 Lingyun Wang 1 , Yu Wang 2 , Xiangkun Bo 1 , Haoyu Wang 3 , Su Yang 4 , Xiaoming Tao 4 , Yunlong Zi 3 , William W. Yu 5 , Wen Jung Li 1 , Walid A. Daoud 1, 6
Affiliation
Dramatic advances in wearable electronics have triggered tremendous demands for wearable power sources. To mitigate the impact of CO2 emission on the environment caused by energy consumption, biomechanical energy harvesting for self-powered wearable electronics offers a promising solution. The output power of devices largely relies on the surface charge density, where adhesion interfaces generate a higher amount than nonadhesion counterparts, yet unfavorable for wearable devices due to the large detachment force required. Thus, sustaining high surface charge density in an adhesion-free interface represents a major challenge. Herein, by leveraging intermolecular interactions and solvent evaporation induced phase separation, a nonadhesion interface is successfully realized, minimizing the interfacial adhesion from 20 to 0 kPa. Importantly, benefiting from the induced nano/microscale topography upon phase separation, comparable surface charges are generated at the interface. Consequently, a high-performance flexible biomechanical energy harvester featuring a record high peak power density of 20.5 W m-2 Hz-1 at low matching impedance of 1 MΩ is achieved under a low biomechanical input force of 5 N. The device can power small electronics by harvesting regular or intermittent biomechanical energy and illuminate light-emitting diodes wired/wirelessly. This work provides a facile strategy for interfacial engineering toward efficient energy harvesting.
中文翻译:
通过氢键和相分离切换界面粘附,实现高性能生物力学能量收集器
可穿戴电子设备的巨大进步引发了对可穿戴电源的巨大需求。减轻CO 2的影响由能源消耗引起的环境排放,用于自供电可穿戴电子设备的生物力学能量收集提供了一个很有前景的解决方案。设备的输出功率很大程度上依赖于表面电荷密度,其中粘附界面产生的数量高于非粘附对应物,但由于需要较大的分离力,因此不利于可穿戴设备。因此,在无粘附界面中维持高表面电荷密度是一项重大挑战。在此,通过利用分子间相互作用和溶剂蒸发引起的相分离,成功实现了非粘附界面,将界面粘附力从 20 kPa 降至 0 kPa。重要的是,受益于相分离时诱导的纳米/微米级形貌,在界面处产生了相当的表面电荷。-2 Hz -1在 1 MΩ 的低匹配阻抗下是在 5 N 的低生物力学输入力下实现的。该设备可以通过收集定期或间歇性的生物力学能量为小型电子设备供电,并以有线/无线方式照亮发光二极管。这项工作为实现高效能量收集的界面工程提供了一种简便的策略。
更新日期:2022-06-15
中文翻译:
通过氢键和相分离切换界面粘附,实现高性能生物力学能量收集器
可穿戴电子设备的巨大进步引发了对可穿戴电源的巨大需求。减轻CO 2的影响由能源消耗引起的环境排放,用于自供电可穿戴电子设备的生物力学能量收集提供了一个很有前景的解决方案。设备的输出功率很大程度上依赖于表面电荷密度,其中粘附界面产生的数量高于非粘附对应物,但由于需要较大的分离力,因此不利于可穿戴设备。因此,在无粘附界面中维持高表面电荷密度是一项重大挑战。在此,通过利用分子间相互作用和溶剂蒸发引起的相分离,成功实现了非粘附界面,将界面粘附力从 20 kPa 降至 0 kPa。重要的是,受益于相分离时诱导的纳米/微米级形貌,在界面处产生了相当的表面电荷。-2 Hz -1在 1 MΩ 的低匹配阻抗下是在 5 N 的低生物力学输入力下实现的。该设备可以通过收集定期或间歇性的生物力学能量为小型电子设备供电,并以有线/无线方式照亮发光二极管。这项工作为实现高效能量收集的界面工程提供了一种简便的策略。