Nano-Micro Letters ( IF 31.6 ) Pub Date : 2022-06-14 , DOI: 10.1007/s40820-022-00864-y Tiezhu Xu 1 , Di Wang 1 , Zhiwei Li 1 , Ziyang Chen 1 , Jinhui Zhang 1 , Tingsong Hu 1 , Xiaogang Zhang 1 , Laifa Shen 1
Simultaneously improving the energy density and power density of electrochemical energy storage systems is the ultimate goal of electrochemical energy storage technology. An effective strategy to achieve this goal is to take advantage of the high capacity and rapid kinetics of electrochemical proton storage to break through the power limit of batteries and the energy limit of capacitors. This article aims to review the research progress on the physicochemical properties, electrochemical performance, and reaction mechanisms of electrode materials for electrochemical proton storage. According to the different charge storage mechanisms, the surface redox, intercalation, and conversion materials are classified and introduced in detail, where the influence of crystal water and other nanostructures on the migration kinetics of protons is clarified. Several reported advanced full cell devices are summarized to promote the commercialization of electrochemical proton storage. Finally, this review provides a framework for research directions of charge storage mechanism, basic principles of material structure design, construction strategies of full cell device, and goals of practical application for electrochemical proton storage.
中文翻译:
电化学质子存储:从基本理解到材料到设备
同时提高电化学储能系统的能量密度和功率密度是电化学储能技术的最终目标。实现这一目标的有效策略是利用电化学质子存储的高容量和快速动力学特性来突破电池的功率限制和电容器的能量限制。本文旨在综述电化学质子存储电极材料的理化性质、电化学性能和反应机理的研究进展。根据不同的电荷存储机制,对表面氧化还原、插层和转换材料进行了详细分类和介绍,阐明了结晶水和其他纳米结构对质子迁移动力学的影响。总结了几种已报道的先进全电池装置,以促进电化学质子存储的商业化。最后,本文为电荷存储机制的研究方向、材料结构设计的基本原理、全电池器件的构建策略以及电化学质子存储的实际应用目标提供了框架。