当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Soft and Tough Microcapsules with Double-Network Hydrogel Shells
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2022-06-12 , DOI: 10.1002/adfm.202203761 Sangmin Lee 1 , Wahyu Martumpal Hamonangan 1 , Jong Hyun Kim 1 , Shin‐Hyun Kim 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2022-06-12 , DOI: 10.1002/adfm.202203761 Sangmin Lee 1 , Wahyu Martumpal Hamonangan 1 , Jong Hyun Kim 1 , Shin‐Hyun Kim 1
Affiliation
Hydrogel-shelled microcapsules allow communication with the surrounding through molecule-selective exchanges, serving as microcarriers for cells, drugs, catalysts, and nanoparticle sensors. However, the low mechanical stability of hydrogels has restricted their use in strong shear flows or compressive fields. Here, microcapsules are designed composed of water core and double-network (DN) hydrogel shell using water-in-oil-in-water-in-oil triple-emulsion templates to secure high mechanical stability as well as molecular size-selective permeation. Monodisperse triple-emulsion droplets are prepared using microfluidic devices. The core water contains divalent ions and the outer water layer contains poly(ethylene glycol)diacrylate (PEGDA) and sodium alginate. The PEGDA is first photocrosslinked by ultraviolet irradiation and the alginate is second ionically crosslinked with an infusion of divalent ions from the core by rupturing the middle oil layer. The resulting DN shells show excellent mechanical stability in comparison with single-network (SN) shells made of PEGDA only. Enhanced elasticity of the DN enables the microcapsules to elastically deform and fully recover the original state for wide ranges of strain and strain rate. Moreover, the DN shells show a threshold force for the shell rupture almost one order of magnitude larger than the SN and maintain their integrity under violent shear flows.
中文翻译:
具有双网络水凝胶壳的软而坚韧的微胶囊
水凝胶壳微胶囊允许通过分子选择性交换与周围环境通信,用作细胞、药物、催化剂和纳米粒子传感器的微载体。然而,水凝胶的低机械稳定性限制了它们在强剪切流或压缩场中的使用。在这里,微胶囊设计由水核和双网络(DN)水凝胶壳组成,使用油包水包水三乳液模板,以确保高机械稳定性和分子尺寸选择性渗透。使用微流体装置制备单分散三重乳液液滴。核心水含有二价离子,外层水含有聚(乙二醇)二丙烯酸酯(PEGDA)和海藻酸钠。PEGDA 首先通过紫外线照射进行光交联,然后海藻酸盐通过破坏中间油层,通过注入来自核心的二价离子进行离子交联。与仅由 PEGDA 制成的单网络 (SN) 外壳相比,所得 DN 外壳显示出出色的机械稳定性。增强的 DN 弹性使微胶囊能够弹性变形并在广泛的应变和应变率范围内完全恢复原始状态。此外,DN 壳显示出壳破裂的阈值力,几乎比 SN 大一个数量级,并在剧烈剪切流下保持其完整性。与仅由 PEGDA 制成的单网络 (SN) 外壳相比,所得 DN 外壳显示出出色的机械稳定性。增强的 DN 弹性使微胶囊能够弹性变形并在广泛的应变和应变率范围内完全恢复原始状态。此外,DN 壳显示出壳破裂的阈值力,几乎比 SN 大一个数量级,并在剧烈剪切流下保持其完整性。与仅由 PEGDA 制成的单网络 (SN) 外壳相比,所得 DN 外壳显示出出色的机械稳定性。增强的 DN 弹性使微胶囊能够弹性变形并在广泛的应变和应变率范围内完全恢复原始状态。此外,DN 壳显示出壳破裂的阈值力,几乎比 SN 大一个数量级,并在剧烈剪切流下保持其完整性。
更新日期:2022-06-12
中文翻译:
具有双网络水凝胶壳的软而坚韧的微胶囊
水凝胶壳微胶囊允许通过分子选择性交换与周围环境通信,用作细胞、药物、催化剂和纳米粒子传感器的微载体。然而,水凝胶的低机械稳定性限制了它们在强剪切流或压缩场中的使用。在这里,微胶囊设计由水核和双网络(DN)水凝胶壳组成,使用油包水包水三乳液模板,以确保高机械稳定性和分子尺寸选择性渗透。使用微流体装置制备单分散三重乳液液滴。核心水含有二价离子,外层水含有聚(乙二醇)二丙烯酸酯(PEGDA)和海藻酸钠。PEGDA 首先通过紫外线照射进行光交联,然后海藻酸盐通过破坏中间油层,通过注入来自核心的二价离子进行离子交联。与仅由 PEGDA 制成的单网络 (SN) 外壳相比,所得 DN 外壳显示出出色的机械稳定性。增强的 DN 弹性使微胶囊能够弹性变形并在广泛的应变和应变率范围内完全恢复原始状态。此外,DN 壳显示出壳破裂的阈值力,几乎比 SN 大一个数量级,并在剧烈剪切流下保持其完整性。与仅由 PEGDA 制成的单网络 (SN) 外壳相比,所得 DN 外壳显示出出色的机械稳定性。增强的 DN 弹性使微胶囊能够弹性变形并在广泛的应变和应变率范围内完全恢复原始状态。此外,DN 壳显示出壳破裂的阈值力,几乎比 SN 大一个数量级,并在剧烈剪切流下保持其完整性。与仅由 PEGDA 制成的单网络 (SN) 外壳相比,所得 DN 外壳显示出出色的机械稳定性。增强的 DN 弹性使微胶囊能够弹性变形并在广泛的应变和应变率范围内完全恢复原始状态。此外,DN 壳显示出壳破裂的阈值力,几乎比 SN 大一个数量级,并在剧烈剪切流下保持其完整性。