当前位置:
X-MOL 学术
›
J. Am. Math. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
The Fontaine-Mazur conjecture in the residually reducible case
Journal of the American Mathematical Society ( IF 3.5 ) Pub Date : 2021-11-15 , DOI: 10.1090/jams/991 Lue Pan
Journal of the American Mathematical Society ( IF 3.5 ) Pub Date : 2021-11-15 , DOI: 10.1090/jams/991 Lue Pan
Abstract:We prove new cases of Fontaine-Mazur conjecture on two-dimensional Galois representations over $\mathbb {Q}$ when the residual representation is reducible. Our approach is via a semi-simple local-global compatibility of the completed cohomology and a Taylor-Wiles patching argument for the completed homology in this case. As a key input, we generalize the work of Skinner-Wiles in the ordinary case. In addition, we also treat the residually irreducible case at the end of the paper. Combining with people’s earlier work, we can prove the Fontaine-Mazur conjecture completely in the regular case when $p\geq 5$.
中文翻译:
剩余可约情况下的 Fontaine-Mazur 猜想
摘要:当残差表示可约时,我们证明了在 $\mathbb {Q}$ 上的二维伽罗瓦表示上的 Fontaine-Mazur 猜想的新案例。我们的方法是通过完整的上同调的半简单局部-全局兼容性和在这种情况下完成的同调的 Taylor-Wiles 修补参数。作为关键输入,我们在普通情况下概括了 Skinner-Wiles 的工作。此外,我们还在论文末尾处理了剩余不可约的情况。结合人们早期的工作,我们可以在$p\geq 5$ 的正则情况下完全证明Fontaine-Mazur 猜想。
更新日期:2021-11-15
中文翻译:
剩余可约情况下的 Fontaine-Mazur 猜想
摘要:当残差表示可约时,我们证明了在 $\mathbb {Q}$ 上的二维伽罗瓦表示上的 Fontaine-Mazur 猜想的新案例。我们的方法是通过完整的上同调的半简单局部-全局兼容性和在这种情况下完成的同调的 Taylor-Wiles 修补参数。作为关键输入,我们在普通情况下概括了 Skinner-Wiles 的工作。此外,我们还在论文末尾处理了剩余不可约的情况。结合人们早期的工作,我们可以在$p\geq 5$ 的正则情况下完全证明Fontaine-Mazur 猜想。