当前位置:
X-MOL 学术
›
J. Am. Math. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Universal points in the asymptotic spectrum of tensors
Journal of the American Mathematical Society ( IF 3.5 ) Pub Date : 2021-11-23 , DOI: 10.1090/jams/996 Matthias Christandl , Péter Vrana , Jeroen Zuiddam
Journal of the American Mathematical Society ( IF 3.5 ) Pub Date : 2021-11-23 , DOI: 10.1090/jams/996 Matthias Christandl , Péter Vrana , Jeroen Zuiddam
Motivated by the problem of constructing fast matrix multiplication algorithms, Strassen (FOCS 1986, Crelle 1987–1991) introduced and developed the theory of asymptotic spectra of tensors. For any sub-semiring X \mathcal {X} of tensors (under direct sum and tensor product), the duality theorem that is at the core of this theory characterizes basic asymptotic properties of the elements of X \mathcal {X} in terms of the asymptotic spectrum of X \mathcal {X} , which is defined as the collection of semiring homomorphisms from X \mathcal {X} to the non-negative reals with a natural monotonicity property. The asymptotic properties characterized by this duality encompass fundamental problems in complexity theory, combinatorics and quantum information.Universal spectral points are elements in the asymptotic spectrum of the semiring of all tensors. Finding all universal spectral points suffices to find the asymptotic spectrum of any sub-semiring. The construction of non-trivial universal spectral points has been an open problem for more than thirty years. We construct, for the first time, a family of non-trivial universal spectral points over the complex numbers, called quantum functionals. We moreover prove that the quantum functionals precisely characterise the asymptotic slice rank of complex tensors. Our construction, which relies on techniques from quantum information theory and representation theory, connects the asymptotic spectrum of tensors to the quantum marginal problem and entanglement polytopes.
中文翻译:
张量渐近谱中的普遍点
受构建快速矩阵乘法算法问题的启发,Strassen (FOCS 1986, Crelle 1987–1991) 引入并发展了张量的渐近谱理论。对于张量的任何子半环 X \mathcal {X}(在直和和张量积下),作为该理论核心的对偶定理描述了 X \mathcal {X} 元素的基本渐近性质: X \mathcal {X} 的渐近谱,它被定义为从 X \mathcal {X} 到具有自然单调性的非负实数的半环同态的集合。以这种对偶为特征的渐近性质涵盖了复杂性理论、组合学和量子信息中的基本问题。通用谱点是所有张量的半环的渐近谱中的元素。找到所有通用谱点就足以找到任何子半透明的渐近谱。三十多年来,非平凡的普遍光谱点的构建一直是一个悬而未决的问题。我们首次在复数上构建了一系列非平凡的通用谱点,称为量子泛函。我们还证明了量子泛函精确地刻画了复张量的渐近切片秩。我们的构建依赖于量子信息论和表示论的技术,将张量的渐近谱与量子边际问题和纠缠多面体联系起来。找到所有通用谱点就足以找到任何子半透明的渐近谱。三十多年来,非平凡的普遍光谱点的构建一直是一个悬而未决的问题。我们首次在复数上构建了一系列非平凡的通用谱点,称为量子泛函。我们还证明了量子泛函精确地刻画了复张量的渐近切片秩。我们的构建依赖于量子信息论和表示论的技术,将张量的渐近谱与量子边际问题和纠缠多面体联系起来。找到所有通用谱点就足以找到任何子半透明的渐近谱。三十多年来,非平凡的普遍光谱点的构建一直是一个悬而未决的问题。我们首次在复数上构建了一系列非平凡的通用谱点,称为量子泛函。我们还证明了量子泛函精确地刻画了复张量的渐近切片秩。我们的构建依赖于量子信息论和表示论的技术,将张量的渐近谱与量子边际问题和纠缠多面体联系起来。三十多年来,非平凡的普遍光谱点的构建一直是一个悬而未决的问题。我们首次在复数上构建了一系列非平凡的通用谱点,称为量子泛函。我们还证明了量子泛函精确地刻画了复张量的渐近切片秩。我们的构建依赖于量子信息论和表示论的技术,将张量的渐近谱与量子边际问题和纠缠多面体联系起来。三十多年来,非平凡的普遍光谱点的构建一直是一个悬而未决的问题。我们首次在复数上构建了一系列非平凡的通用谱点,称为量子泛函。我们还证明了量子泛函精确地刻画了复张量的渐近切片秩。我们的构建依赖于量子信息论和表示论的技术,将张量的渐近谱与量子边际问题和纠缠多面体联系起来。
更新日期:2021-11-23
中文翻译:
张量渐近谱中的普遍点
受构建快速矩阵乘法算法问题的启发,Strassen (FOCS 1986, Crelle 1987–1991) 引入并发展了张量的渐近谱理论。对于张量的任何子半环 X \mathcal {X}(在直和和张量积下),作为该理论核心的对偶定理描述了 X \mathcal {X} 元素的基本渐近性质: X \mathcal {X} 的渐近谱,它被定义为从 X \mathcal {X} 到具有自然单调性的非负实数的半环同态的集合。以这种对偶为特征的渐近性质涵盖了复杂性理论、组合学和量子信息中的基本问题。通用谱点是所有张量的半环的渐近谱中的元素。找到所有通用谱点就足以找到任何子半透明的渐近谱。三十多年来,非平凡的普遍光谱点的构建一直是一个悬而未决的问题。我们首次在复数上构建了一系列非平凡的通用谱点,称为量子泛函。我们还证明了量子泛函精确地刻画了复张量的渐近切片秩。我们的构建依赖于量子信息论和表示论的技术,将张量的渐近谱与量子边际问题和纠缠多面体联系起来。找到所有通用谱点就足以找到任何子半透明的渐近谱。三十多年来,非平凡的普遍光谱点的构建一直是一个悬而未决的问题。我们首次在复数上构建了一系列非平凡的通用谱点,称为量子泛函。我们还证明了量子泛函精确地刻画了复张量的渐近切片秩。我们的构建依赖于量子信息论和表示论的技术,将张量的渐近谱与量子边际问题和纠缠多面体联系起来。找到所有通用谱点就足以找到任何子半透明的渐近谱。三十多年来,非平凡的普遍光谱点的构建一直是一个悬而未决的问题。我们首次在复数上构建了一系列非平凡的通用谱点,称为量子泛函。我们还证明了量子泛函精确地刻画了复张量的渐近切片秩。我们的构建依赖于量子信息论和表示论的技术,将张量的渐近谱与量子边际问题和纠缠多面体联系起来。三十多年来,非平凡的普遍光谱点的构建一直是一个悬而未决的问题。我们首次在复数上构建了一系列非平凡的通用谱点,称为量子泛函。我们还证明了量子泛函精确地刻画了复张量的渐近切片秩。我们的构建依赖于量子信息论和表示论的技术,将张量的渐近谱与量子边际问题和纠缠多面体联系起来。三十多年来,非平凡的普遍光谱点的构建一直是一个悬而未决的问题。我们首次在复数上构建了一系列非平凡的通用谱点,称为量子泛函。我们还证明了量子泛函精确地刻画了复张量的渐近切片秩。我们的构建依赖于量子信息论和表示论的技术,将张量的渐近谱与量子边际问题和纠缠多面体联系起来。