当前位置:
X-MOL 学术
›
Quantum Topol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Heegaard Floer invariants of contact structures on links of surface singularities
Quantum Topology ( IF 1.0 ) Pub Date : 2021-03-31 , DOI: 10.4171/qt/153 József Bodnár 1 , Olga Plamenevskaya 1
Quantum Topology ( IF 1.0 ) Pub Date : 2021-03-31 , DOI: 10.4171/qt/153 József Bodnár 1 , Olga Plamenevskaya 1
Affiliation
Let a contact 3-manifold $(Y, \xi_0)$ be the link of a normal surface singularity equipped with its canonical contact structure $\xi_0$. We prove a special property of such contact 3-manifolds of "algebraic" origin: the Heegaard Floer invariant $c^+(\xi_0)\in HF^+(-Y)$ cannot lie in the image of the $U$-action on $HF^+(-Y)$. It follows that Karakurt's "height of $U$-tower" invariants are always 0 for canonical contact structures on singularity links, which contrasts the fact that the height of $U$-tower can be arbitrary for general fillable contact structures. Our proof uses the interplay between the Heegaard Floer homology and N\'emethi's lattice cohomology.
中文翻译:
表面奇点连接上接触结构的 Heegaard Floer 不变量
设接触 3 流形 $(Y, \xi_0)$ 是配备其规范接触结构 $\xi_0$ 的法向曲面奇点的链接。我们证明了这种“代数”起源的接触 3-流形的特殊性质:Heegaard Floer 不变量 $c^+(\xi_0)\in HF^+(-Y)$ 不能位于 $U$- 的图像中对 $HF^+(-Y)$ 采取行动。因此,对于奇点连接上的规范接触结构,Karakurt 的“$U$-tower 高度”不变量始终为 0,这与 $U$-tower 的高度对于一般可填充接触结构可以是任意的事实形成鲜明对比。我们的证明使用了 Heegaard Floer 同调和 N\'emethi 的格上同调之间的相互作用。
更新日期:2021-03-31
中文翻译:
表面奇点连接上接触结构的 Heegaard Floer 不变量
设接触 3 流形 $(Y, \xi_0)$ 是配备其规范接触结构 $\xi_0$ 的法向曲面奇点的链接。我们证明了这种“代数”起源的接触 3-流形的特殊性质:Heegaard Floer 不变量 $c^+(\xi_0)\in HF^+(-Y)$ 不能位于 $U$- 的图像中对 $HF^+(-Y)$ 采取行动。因此,对于奇点连接上的规范接触结构,Karakurt 的“$U$-tower 高度”不变量始终为 0,这与 $U$-tower 的高度对于一般可填充接触结构可以是任意的事实形成鲜明对比。我们的证明使用了 Heegaard Floer 同调和 N\'emethi 的格上同调之间的相互作用。