当前位置: X-MOL 学术J. Differ. Geom. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Projective Anosov representations, convex cocompact actions, and rigidity
Journal of Differential Geometry ( IF 1.3 ) Pub Date : 2021-11-01 , DOI: 10.4310/jdg/1635368438
Andrew Zimmer 1
Affiliation  

In this paper we show that many projective Anosov representations act convex cocompactly on some properly convex domain in real projective space. In particular, if a non-elementary word hyperbolic group is not commensurable to a non-trivial free product or the fundamental group of a closed hyperbolic surface, then then any projective Anosov representation of that group acts convex cocompactly on some properly convex domain in real projective space. We also show that if a projective Anosov representation preserves a properly convex domain, then it acts convex cocompactly on some (possibly different) properly convex domain. We then give three applications. First we show that Anosov representations into general semisimple Lie groups can be defined in terms of the existence of a convex cocompact action on a properly convex domain in some real projective space (which depends on the semisimple Lie group and parabolic subgroup). Next we prove a rigidity result involving the Hilbert entropy of a projective Anosov representation. Finally, we prove a rigidity result which shows that the image of the boundary map associated to a projective Anosov representation is rarely a $C^2$ submanifold of projective space. This final rigidity result also applies to Hitchin representations.

中文翻译:

射影 Anosov 表示、凸协紧作用和刚性

在本文中,我们展示了许多射影 Anosov 表示在真实射影空间中的某个适当凸域上作用为凸协紧。特别是,如果一个非基本词双曲群不能与一个非平凡的自由乘积或闭合双曲曲面的基本群可通约,那么该群的任何射影 Anosov 表示在实数中的某个适当凸域上都是凸协紧的投影空间。我们还表明,如果一个射影 Anosov 表示保留了一个适当凸域,那么它在某些(可能不同)适当凸域上是凸共紧的。然后我们给出三个应用程序。首先,我们证明了一般半单李群的阿诺索夫表示可以定义为在某个实射影空间(取决于半单李群和抛物子群)中适当凸域上存在凸协紧作用。接下来,我们证明了一个涉及投影 Anosov 表示的 Hilbert 熵的刚性结果。最后,我们证明了一个刚性结果,该结果表明与投影 Anosov 表示相关的边界图图像很少是投影空间的 $C^2$ 子流形。这个最终的刚性结果也适用于 Hitchin 表示。我们证明了一个刚性结果,它表明与投影 Anosov 表示相关的边界图图像很少是投影空间的 $C^2$ 子流形。这个最终的刚性结果也适用于 Hitchin 表示。我们证明了一个刚性结果,它表明与投影 Anosov 表示相关的边界图图像很少是投影空间的 $C^2$ 子流形。这个最终的刚性结果也适用于 Hitchin 表示。
更新日期:2021-11-01
down
wechat
bug