当前位置:
X-MOL 学术
›
J. Differ. Geom.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Symplectic rational $G$-surfaces and equivariant symplectic cones
Journal of Differential Geometry ( IF 1.3 ) Pub Date : 2021-10-01 , DOI: 10.4310/jdg/1632506334 Weimin Chen 1 , Tian-Jun Li 2 , Weiwei Wu 3
Journal of Differential Geometry ( IF 1.3 ) Pub Date : 2021-10-01 , DOI: 10.4310/jdg/1632506334 Weimin Chen 1 , Tian-Jun Li 2 , Weiwei Wu 3
Affiliation
We give characterizations of a finite group $G$ acting symplectically on a rational surface ($\mathbb{C}P^2$ blown up at two or more points). In particular, we obtain a symplectic version of the dichotomy of $G$-conic bundles versus $G$-del Pezzo surfaces for the corresponding $G$-rational surfaces, analogous to a classical result in algebraic geometry. Besides the characterizations of the group $G$ (which is completely determined for the case of $\mathbb{C}P^2\# N\overline{\mathbb{C}P^2}$, $N=2,3,4$), we also investigate the equivariant symplectic minimality and equivariant symplectic cone of a given $G$-rational surface.
中文翻译:
辛有理 $G$-曲面和等变辛锥
我们给出了一个有限群 $G$ 的表征,它辛地作用在有理曲面上($\mathbb{C}P^2$ 在两个或多个点上爆炸)。特别是,我们获得了对应的 $G$-有理曲面的 $G$-圆锥丛与 $G$-del Pezzo 曲面的二分法的辛版本,类似于代数几何中的经典结果。除了 $G$ 群的表征(对于 $\mathbb{C}P^2\# N\overline{\mathbb{C}P^2}$ 的情况完全确定,$N=2,3 ,4$),我们还研究了给定 $G$-有理曲面的等变辛极小和等变辛锥。
更新日期:2021-10-01
中文翻译:
辛有理 $G$-曲面和等变辛锥
我们给出了一个有限群 $G$ 的表征,它辛地作用在有理曲面上($\mathbb{C}P^2$ 在两个或多个点上爆炸)。特别是,我们获得了对应的 $G$-有理曲面的 $G$-圆锥丛与 $G$-del Pezzo 曲面的二分法的辛版本,类似于代数几何中的经典结果。除了 $G$ 群的表征(对于 $\mathbb{C}P^2\# N\overline{\mathbb{C}P^2}$ 的情况完全确定,$N=2,3 ,4$),我们还研究了给定 $G$-有理曲面的等变辛极小和等变辛锥。