当前位置:
X-MOL 学术
›
J. Differ. Geom.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Harmonic quasi-isometric maps into Gromov hyperbolic $\operatorname{CAT}(0)$-spaces
Journal of Differential Geometry ( IF 1.3 ) Pub Date : 2021-07-01 , DOI: 10.4310/jdg/1625860625 Hubert Sidler 1 , Stefan Wenger 1
Journal of Differential Geometry ( IF 1.3 ) Pub Date : 2021-07-01 , DOI: 10.4310/jdg/1625860625 Hubert Sidler 1 , Stefan Wenger 1
Affiliation
We show that for every quasi-isometric map from a Hadamard manifold of pinched negative curvature to a proper, Gromov hyperbolic, $\operatorname{CAT}(0)$-space there exists an energy minimizing harmonic map at finite distance. This harmonic map is moreover Lipschitz. This generalizes a recent result of Benoist–Hulin.
中文翻译:
谐波准等距映射到 Gromov 双曲 $\operatorname{CAT}(0)$-spaces
我们表明,对于从收缩负曲率的 Hadamard 流形到适当的 Gromov 双曲 $\operatorname{CAT}(0)$-空间的每个准等距映射,都存在一个有限距离处的能量最小化谐波映射。这个调和图也是 Lipschitz 的。这概括了 Benoist-Hulin 最近的一个结果。
更新日期:2021-07-01
中文翻译:
谐波准等距映射到 Gromov 双曲 $\operatorname{CAT}(0)$-spaces
我们表明,对于从收缩负曲率的 Hadamard 流形到适当的 Gromov 双曲 $\operatorname{CAT}(0)$-空间的每个准等距映射,都存在一个有限距离处的能量最小化谐波映射。这个调和图也是 Lipschitz 的。这概括了 Benoist-Hulin 最近的一个结果。