当前位置: X-MOL 学术J. Differ. Geom. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Existence and limiting behavior of min-max solutions of the Ginzburg–Landau equations on compact manifolds
Journal of Differential Geometry ( IF 1.3 ) Pub Date : 2021-06-01 , DOI: 10.4310/jdg/1622743143
Daniel Stern 1
Affiliation  

We use a natural two-parameter min-max construction to produce critical points of the Ginzburg–Landau functionals on a compact Riemannian manifold of dimension $\geq 2$. We investigate the limiting behavior of these critical points as $\varepsilon \to 0$, and show in particular that some of the energy concentrates on a nontrivial stationary, rectifiable $(n-2)$-varifold as $\varepsilon \to 0$, suggesting connections to the min-max construction of minimal $(n-2)$-submanifolds.

中文翻译:

紧流形上 Ginzburg-Landau 方程的 min-max 解的存在性和极限行为

我们使用自然的两参数最小-最大构造来在维数为 $\geq 2$ 的紧凑黎曼流形上生成 Ginzburg-Landau 泛函的临界点。我们研究了这些临界点在 $\varepsilon \to 0$ 时的限制行为,并特别表明,一些能量集中在一个非平凡的平稳、可校正的 $(n-2)$-varifold 上,如 $\varepsilon \to 0 $,建议连接到最小 $(n-2)$-submanifolds 的 min-max 构造。
更新日期:2021-06-01
down
wechat
bug