当前位置:
X-MOL 学术
›
J. Differ. Geom.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
On the hyperplane conjecture for periods of Calabi–Yau hypersurfaces in $\mathbf{P}^n$
Journal of Differential Geometry ( IF 1.3 ) Pub Date : 2021-05-01 , DOI: 10.4310/jdg/1620272942 Bong H. Lian 1 , Minxian Zhu 2
Journal of Differential Geometry ( IF 1.3 ) Pub Date : 2021-05-01 , DOI: 10.4310/jdg/1620272942 Bong H. Lian 1 , Minxian Zhu 2
Affiliation
In [HLY1], Hosono, Lian, and Yau posed a conjecture characterizing the set of solutions to certain Gelfand-Kapranov-Zelevinsky hypergeometric equations which are realized as periods of Calabi-Yau hypersurfaces in a Gorenstein Fano toric variety $X$. We prove this conjecture in the case where $X$ is a complex projective space.
中文翻译:
关于$\mathbf{P}^n$中Calabi-Yau超曲面周期的超平面猜想
在 [HLY1] 中,Hosono、Lian 和 Yau 提出了一个猜想,描述了某些 Gelfand-Kapranov-Zelevinsky 超几何方程的解集,这些方程被实现为 Gorenstein Fano 复曲面变体 $X$ 中的 Calabi-Yau 超曲面周期。我们在 $X$ 是复射影空间的情况下证明了这个猜想。
更新日期:2021-05-01
中文翻译:
关于$\mathbf{P}^n$中Calabi-Yau超曲面周期的超平面猜想
在 [HLY1] 中,Hosono、Lian 和 Yau 提出了一个猜想,描述了某些 Gelfand-Kapranov-Zelevinsky 超几何方程的解集,这些方程被实现为 Gorenstein Fano 复曲面变体 $X$ 中的 Calabi-Yau 超曲面周期。我们在 $X$ 是复射影空间的情况下证明了这个猜想。