当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Euryhaline-Fish-Inspired Salinity Self-Adaptive Nanofluidic Diode Leads to High-Performance Blue Energy Harvesters
Advanced Materials ( IF 27.4 ) Pub Date : 2022-06-08 , DOI: 10.1002/adma.202203109 Junran Hao 1 , Bin Bao 2 , Jiajia Zhou 3 , Yanshuai Cui 4 , Xiachao Chen 5 , Jiale Zhou 1 , Yahong Zhou 1, 2, 6 , Lei Jiang 1, 2, 6, 7
Advanced Materials ( IF 27.4 ) Pub Date : 2022-06-08 , DOI: 10.1002/adma.202203109 Junran Hao 1 , Bin Bao 2 , Jiajia Zhou 3 , Yanshuai Cui 4 , Xiachao Chen 5 , Jiale Zhou 1 , Yahong Zhou 1, 2, 6 , Lei Jiang 1, 2, 6, 7
Affiliation
The adaptability to wide salinities remains a big challenge for artificial nanofluidic systems, which plays a vital role in water–energy nexus science. Here, inspired by euryhaline fish, sandwich-structured nanochannel systems are constructed to realize salinity self-adaptive nanofluidic diodes, which lead to high-performance salinity-gradient power generators with low internal resistance. Adaptive to changing salinity, the pore morphology of one side of the nanochannel system switches from a 1D straight nanochannel (45 nm) to 3D network pores (1.9 nm pore size and ≈1013 pore density), along with three orders of magnitude change for charge density. Thus, the abundant surface charges and narrow pores render the membrane-based osmotic power generator with power density up to 26.22 Wm−2. The salinity-adaptive membrane solves the surface charge-shielding problem caused by abundant mobile ions in high salinity and increases the overlapping degree of the electric double layer. The dynamic adaption process of the membrane to the hypersaline environment endows it with good salt endurance and stability. New routes for designing nanofluidic devices functionally adaptable to different salinities and building power generators with excellent salt endurance are demonstrated.
中文翻译:
一种受广盐鱼启发的盐度自适应纳米流体二极管导致高性能蓝色能量收集器
对广泛盐度的适应性仍然是人工纳米流体系统的一大挑战,它在水能关系科学中起着至关重要的作用。在这里,受广盐鱼的启发,构建了三明治结构的纳米通道系统,以实现盐度自适应纳米流体二极管,从而产生具有低内阻的高性能盐度梯度发电机。适应盐度的变化,纳米通道系统一侧的孔形态从 1D 直纳米通道(45 nm)转换为 3D 网络孔(1.9 nm 孔径和 ≈10 13孔密度),随着三个数量级的变化电荷密度。因此,丰富的表面电荷和狭窄的孔隙使得基于膜的渗透发电机具有高达26.22 Wm -2的功率密度. 盐度适应膜解决了高盐度下大量移动离子引起的表面电荷屏蔽问题,增加了双电层的重叠度。膜对高盐环境的动态适应过程使其具有良好的耐盐性和稳定性。展示了设计在功能上适应不同盐度的纳米流体装置和建造具有优异耐盐性的发电机的新途径。
更新日期:2022-06-08
中文翻译:
一种受广盐鱼启发的盐度自适应纳米流体二极管导致高性能蓝色能量收集器
对广泛盐度的适应性仍然是人工纳米流体系统的一大挑战,它在水能关系科学中起着至关重要的作用。在这里,受广盐鱼的启发,构建了三明治结构的纳米通道系统,以实现盐度自适应纳米流体二极管,从而产生具有低内阻的高性能盐度梯度发电机。适应盐度的变化,纳米通道系统一侧的孔形态从 1D 直纳米通道(45 nm)转换为 3D 网络孔(1.9 nm 孔径和 ≈10 13孔密度),随着三个数量级的变化电荷密度。因此,丰富的表面电荷和狭窄的孔隙使得基于膜的渗透发电机具有高达26.22 Wm -2的功率密度. 盐度适应膜解决了高盐度下大量移动离子引起的表面电荷屏蔽问题,增加了双电层的重叠度。膜对高盐环境的动态适应过程使其具有良好的耐盐性和稳定性。展示了设计在功能上适应不同盐度的纳米流体装置和建造具有优异耐盐性的发电机的新途径。