当前位置:
X-MOL 学术
›
Nanotechnol. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Preparation of vanadium by the magnesiothermic self-propagating reduction and process control
Nanotechnology Reviews ( IF 6.1 ) Pub Date : 2022-01-01 , DOI: 10.1515/ntrev-2022-0074 Yan Jisen 1 , Dou Zhihe 1 , Zhang Ting’an 1
Nanotechnology Reviews ( IF 6.1 ) Pub Date : 2022-01-01 , DOI: 10.1515/ntrev-2022-0074 Yan Jisen 1 , Dou Zhihe 1 , Zhang Ting’an 1
Affiliation
Abstract A new process for preparing vanadium by direct reduction of V2O5 from the Mg–V2O5 self-propagating system is proposed in this article. The reaction behavior and path of V2O5 in the magnesiothermic reduction process were investigated using the XRD, SEM-EDS, laser particle size analyzer, and specific surface area analyzer. The experimental results show that the reaction of the V2O5–Mg system is a solid-solid reaction, and the initial reaction temperature is 570°C. Although the formation of MgV2O4 spinel cannot be predicted via the calculation of thermodynamics, the presence of MgV2O4 spinel is of great significance to the V2O5 reduction process. Taking into account the characteristics of the gradual reduction of V2O5 by Mg and the appearance of the MgV2O4 spinel phase, the limiting link of the reaction may be the transition from MgV2O4 to V. A reduction path of V2O5 beyond the thermodynamic prediction is proposed: V2O5 → V3O5 → MgV2O4 → V. The reaction temperature and the phase transformation process can be effectively controlled by adjusting the ratio of reactants and additives, and element V can be obtained by a one-step rapid self-propagating reaction and breaking through the reaction restriction link. In this experiment, the vanadium powder with a porous structure, a specific surface area of 3.44 m2 g−1, and the oxygen content of 4.86 wt% were obtained.
中文翻译:
镁热自蔓延还原法制备钒及工艺控制
摘要 本文提出了一种由Mg-V2O5自蔓延体系直接还原V2O5制备钒的新工艺。采用XRD、SEM-EDS、激光粒度仪和比表面积分析仪研究了V2O5在磁热还原过程中的反应行为和路径。实验结果表明,V2O5-Mg体系的反应为固-固反应,初始反应温度为570℃。虽然通过热力学计算无法预测 MgV2O4 尖晶石的形成,但 MgV2O4 尖晶石的存在对 V2O5 还原过程具有重要意义。考虑到Mg逐渐还原V2O5的特点和MgV2O4尖晶石相的出现,反应的限制环节可能是 MgV2O4 向 V 的转变。提出了一条超越热力学预测的 V2O5 还原路径:V2O5 → V3O5 → MgV2O4 → V。通过调节反应温度和相变过程可以有效控制反应温度和相变过程。反应物和添加剂的比例,通过一步快速自蔓延反应,突破反应限制环节,即可得到元素V。在本实验中,获得了具有多孔结构的钒粉体,比表面积为 3.44 m2 g-1,氧含量为 4.86 wt%。元素V可以通过一步快速自蔓延反应,突破反应限制环节得到。在本实验中,获得了具有多孔结构的钒粉体,比表面积为 3.44 m2 g-1,氧含量为 4.86 wt%。元素V可以通过一步快速自蔓延反应,突破反应限制环节得到。在本实验中,获得了具有多孔结构的钒粉体,比表面积为 3.44 m2 g-1,氧含量为 4.86 wt%。
更新日期:2022-01-01
中文翻译:
镁热自蔓延还原法制备钒及工艺控制
摘要 本文提出了一种由Mg-V2O5自蔓延体系直接还原V2O5制备钒的新工艺。采用XRD、SEM-EDS、激光粒度仪和比表面积分析仪研究了V2O5在磁热还原过程中的反应行为和路径。实验结果表明,V2O5-Mg体系的反应为固-固反应,初始反应温度为570℃。虽然通过热力学计算无法预测 MgV2O4 尖晶石的形成,但 MgV2O4 尖晶石的存在对 V2O5 还原过程具有重要意义。考虑到Mg逐渐还原V2O5的特点和MgV2O4尖晶石相的出现,反应的限制环节可能是 MgV2O4 向 V 的转变。提出了一条超越热力学预测的 V2O5 还原路径:V2O5 → V3O5 → MgV2O4 → V。通过调节反应温度和相变过程可以有效控制反应温度和相变过程。反应物和添加剂的比例,通过一步快速自蔓延反应,突破反应限制环节,即可得到元素V。在本实验中,获得了具有多孔结构的钒粉体,比表面积为 3.44 m2 g-1,氧含量为 4.86 wt%。元素V可以通过一步快速自蔓延反应,突破反应限制环节得到。在本实验中,获得了具有多孔结构的钒粉体,比表面积为 3.44 m2 g-1,氧含量为 4.86 wt%。元素V可以通过一步快速自蔓延反应,突破反应限制环节得到。在本实验中,获得了具有多孔结构的钒粉体,比表面积为 3.44 m2 g-1,氧含量为 4.86 wt%。