当前位置:
X-MOL 学术
›
Nanotechnol. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Chemically reactive Maxwell nanoliquid flow by a stretching surface in the frames of Newtonian heating, nonlinear convection and radiative flux: Nanopolymer flow processing simulation
Nanotechnology Reviews ( IF 6.1 ) Pub Date : 2022-01-01 , DOI: 10.1515/ntrev-2022-0078 Muhammad Nasir 1 , Muhammad Waqas 2 , O. Anwar Bég 3 , D. Baba Basha 4 , N. Zamri 1 , H. J. Leonard 3 , Ilyas Khan 5
Nanotechnology Reviews ( IF 6.1 ) Pub Date : 2022-01-01 , DOI: 10.1515/ntrev-2022-0078 Muhammad Nasir 1 , Muhammad Waqas 2 , O. Anwar Bég 3 , D. Baba Basha 4 , N. Zamri 1 , H. J. Leonard 3 , Ilyas Khan 5
Affiliation
Abstract The effects of a chemical reaction and radiative heat flux in a nonlinear mixed thermo-solutal convection flow of a viscoelastic nanoliquid from a stretchable surface are investigated theoretically. Newtonian heating is also considered. The upper-convected Maxwell (UCM) model is deployed to represent the non-Newtonian characteristics. The model also includes the influence of thermal radiation that is simulated via an algebraic flux model. Buongiorno’s two-component nanofluid model is implemented for thermophoretic and Brownian motion effects. Convective thermal and solutal boundary conditions are utilized to provide a more comprehensive evaluation of temperature and concentration distributions. Dimensionless equations are used to create the flow model by utilizing the appropriate parameters. The computed models are presented through a convergent homotopic analysis method (HAM) approach with the help of Mathematica-12 symbolic software. Authentication of HAM solutions with special cases from the literature is presented. The impact of various thermophysical, nanoscale and rheological parameters on transport characteristics is visualized graphically and interpreted in detail. Temperatures are strongly enhanced with Brownian motion and thermophoresis parameters. Velocity is boosted with the increment in the Deborah viscoelastic number and mixed convection parameter, and the hydrodynamic boundary layer thickness is reduced. A stronger generative chemical reaction enhances concentration magnitudes, whereas an increment in the destructive chemical reaction reduces them and also depletes the concentration boundary layer thickness. Temperature and concentration are also strongly modified by the conjugate thermal and solutal parameters. Greater radiative flux also enhances the thermal boundary layer thickness. Increasing the Schmidt number and the Brownian motion parameter diminish the concentration values, whereas they elevate the Sherwood number magnitudes, i.e. enhance the nanoparticle mass transfer rate to the wall.
中文翻译:
牛顿加热、非线性对流和辐射通量框架中拉伸表面的化学反应麦克斯韦纳米液体流动:纳米聚合物流动处理模拟
摘要 从理论上研究了来自可拉伸表面的粘弹性纳米液体的非线性混合热-溶质对流中化学反应和辐射热通量的影响。牛顿加热也被考虑在内。使用上对流麦克斯韦 (UCM) 模型来表示非牛顿特性。该模型还包括通过代数通量模型模拟的热辐射的影响。Buongiorno 的双组分纳米流体模型适用于热泳和布朗运动效应。对流热和溶质边界条件用于对温度和浓度分布进行更全面的评估。无量纲方程用于通过利用适当的参数来创建流动模型。在 Mathematica-12 符号软件的帮助下,通过收敛同伦分析法 (HAM) 方法呈现计算模型。介绍了使用文献中的特殊情况对 HAM 解决方案进行验证。各种热物理、纳米尺度和流变参数对传输特性的影响以图形方式可视化并详细解释。布朗运动和热泳参数强烈提高了温度。速度随着 Deborah 粘弹性数和混合对流参数的增加而增加,流体动力边界层厚度减小。更强的生成化学反应会提高浓度幅度,而破坏性化学反应的增加会降低浓度幅度,也会降低浓度边界层的厚度。温度和浓度也受到共轭热和溶质参数的强烈影响。更大的辐射通量也增加了热边界层的厚度。增加施密特数和布朗运动参数会降低浓度值,而它们会提高舍伍德数的大小,即提高纳米颗粒到壁的传质速率。
更新日期:2022-01-01
中文翻译:
牛顿加热、非线性对流和辐射通量框架中拉伸表面的化学反应麦克斯韦纳米液体流动:纳米聚合物流动处理模拟
摘要 从理论上研究了来自可拉伸表面的粘弹性纳米液体的非线性混合热-溶质对流中化学反应和辐射热通量的影响。牛顿加热也被考虑在内。使用上对流麦克斯韦 (UCM) 模型来表示非牛顿特性。该模型还包括通过代数通量模型模拟的热辐射的影响。Buongiorno 的双组分纳米流体模型适用于热泳和布朗运动效应。对流热和溶质边界条件用于对温度和浓度分布进行更全面的评估。无量纲方程用于通过利用适当的参数来创建流动模型。在 Mathematica-12 符号软件的帮助下,通过收敛同伦分析法 (HAM) 方法呈现计算模型。介绍了使用文献中的特殊情况对 HAM 解决方案进行验证。各种热物理、纳米尺度和流变参数对传输特性的影响以图形方式可视化并详细解释。布朗运动和热泳参数强烈提高了温度。速度随着 Deborah 粘弹性数和混合对流参数的增加而增加,流体动力边界层厚度减小。更强的生成化学反应会提高浓度幅度,而破坏性化学反应的增加会降低浓度幅度,也会降低浓度边界层的厚度。温度和浓度也受到共轭热和溶质参数的强烈影响。更大的辐射通量也增加了热边界层的厚度。增加施密特数和布朗运动参数会降低浓度值,而它们会提高舍伍德数的大小,即提高纳米颗粒到壁的传质速率。