当前位置:
X-MOL 学术
›
Nanotechnol. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Microstructure-dependent photoelectrocatalytic activity of heterogeneous ZnO–ZnS nanosheets
Nanotechnology Reviews ( IF 6.1 ) Pub Date : 2022-01-01 , DOI: 10.1515/ntrev-2022-0076 Yuan-Chang Liang,Chia-Hung Huang
Nanotechnology Reviews ( IF 6.1 ) Pub Date : 2022-01-01 , DOI: 10.1515/ntrev-2022-0076 Yuan-Chang Liang,Chia-Hung Huang
Abstract ZnS crystallite-loaded ZnO sheet composites were successfully synthesized through vulcanization of hydrothermally derived porous ZnO sheet templates. The sulfur precursor (Na2S: 0.05–0.25 M) concentration affects the ZnS loading content and surface morphology of the ZnO–ZnS composites. A higher sulfur precursor concentration increased the ZnS loading content and decreased the porosity of the ZnO–ZnS composites. The ZnO–ZnS sheet composites with the atomic composition ratio of ZnO larger than that of the decorated ZnS exhibited an enhanced photoactivity. By contrast, the overloading of ZnS crystallites on the ZnO template decreased photoactivity. The ZnO–ZnS sheet composite with a S/O atomic ratio of 0.61 exhibits the highest photoactivity among various samples. The enhanced charge separation efficiency because of the formation of ZnO/ZnS heterojunctions and porous structure allowed the synthesis of the ZnO–ZnS composite via hydrothermal vulcanization with 0.05 M Na2S, and shows the higher photoelectrochemical (PEC) degradation ability towards Rhodamine B solution among various samples. The scavenger tests and the proposed PEC-degradation mechanism demonstrate that superoxide radicals are the main active species for the degradation of the RhB solution. The experimental results herein show that the porous ZnO–ZnS sheet composite with a suitable phase ratio is promising for photoelectrocatalyst applications.
中文翻译:
非均相ZnO-ZnS纳米片的微观结构依赖性光电催化活性
摘要 通过水热衍生的多孔ZnO片模板硫化成功合成了载ZnS微晶的ZnO片复合材料。硫前驱体(Na2S:0.05-0.25 M)浓度影响 ZnS 负载量和 ZnO-ZnS 复合材料的表面形态。较高的硫前驱体浓度增加了 ZnS 的负载量并降低了 ZnO-ZnS 复合材料的孔隙率。ZnO的原子组成比大于修饰的ZnS的ZnO-ZnS片状复合材料表现出增强的光活性。相比之下,ZnO 模板上 ZnS 微晶的过载会降低光活性。S/O原子比为0.61的ZnO-ZnS片状复合材料在各种样品中表现出最高的光活性。由于 ZnO/ZnS 异质结和多孔结构的形成,提高了电荷分离效率,因此可以通过 0.05 M Na2S 的水热硫化合成 ZnO-ZnS 复合材料,并显示出对罗丹明 B 溶液的更高光电化学 (PEC) 降解能力。样品。清除剂测试和提出的 PEC 降解机制表明,超氧自由基是 RhB 溶液降解的主要活性物质。本文的实验结果表明,具有合适相比的多孔 ZnO-ZnS 片状复合材料有望用于光电催化剂的应用。并显示出在各种样品中对罗丹明 B 溶液具有更高的光电化学 (PEC) 降解能力。清除剂测试和提出的 PEC 降解机制表明,超氧自由基是 RhB 溶液降解的主要活性物质。本文的实验结果表明,具有合适相比的多孔 ZnO-ZnS 片状复合材料有望用于光电催化剂的应用。并显示出在各种样品中对罗丹明 B 溶液具有更高的光电化学 (PEC) 降解能力。清除剂测试和提出的 PEC 降解机制表明,超氧自由基是 RhB 溶液降解的主要活性物质。本文的实验结果表明,具有合适相比的多孔 ZnO-ZnS 片状复合材料有望用于光电催化剂的应用。
更新日期:2022-01-01
中文翻译:
非均相ZnO-ZnS纳米片的微观结构依赖性光电催化活性
摘要 通过水热衍生的多孔ZnO片模板硫化成功合成了载ZnS微晶的ZnO片复合材料。硫前驱体(Na2S:0.05-0.25 M)浓度影响 ZnS 负载量和 ZnO-ZnS 复合材料的表面形态。较高的硫前驱体浓度增加了 ZnS 的负载量并降低了 ZnO-ZnS 复合材料的孔隙率。ZnO的原子组成比大于修饰的ZnS的ZnO-ZnS片状复合材料表现出增强的光活性。相比之下,ZnO 模板上 ZnS 微晶的过载会降低光活性。S/O原子比为0.61的ZnO-ZnS片状复合材料在各种样品中表现出最高的光活性。由于 ZnO/ZnS 异质结和多孔结构的形成,提高了电荷分离效率,因此可以通过 0.05 M Na2S 的水热硫化合成 ZnO-ZnS 复合材料,并显示出对罗丹明 B 溶液的更高光电化学 (PEC) 降解能力。样品。清除剂测试和提出的 PEC 降解机制表明,超氧自由基是 RhB 溶液降解的主要活性物质。本文的实验结果表明,具有合适相比的多孔 ZnO-ZnS 片状复合材料有望用于光电催化剂的应用。并显示出在各种样品中对罗丹明 B 溶液具有更高的光电化学 (PEC) 降解能力。清除剂测试和提出的 PEC 降解机制表明,超氧自由基是 RhB 溶液降解的主要活性物质。本文的实验结果表明,具有合适相比的多孔 ZnO-ZnS 片状复合材料有望用于光电催化剂的应用。并显示出在各种样品中对罗丹明 B 溶液具有更高的光电化学 (PEC) 降解能力。清除剂测试和提出的 PEC 降解机制表明,超氧自由基是 RhB 溶液降解的主要活性物质。本文的实验结果表明,具有合适相比的多孔 ZnO-ZnS 片状复合材料有望用于光电催化剂的应用。