当前位置:
X-MOL 学术
›
Nanotechnol. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Study on stress distribution of SiC/Al composites based on microstructure models with microns and nanoparticles
Nanotechnology Reviews ( IF 6.1 ) Pub Date : 2022-01-01 , DOI: 10.1515/ntrev-2022-0112 Zi-han Gao 1 , Han-jun Gao 1 , Yi-du Zhang 1 , Qiong Wu 1 , Shu-guang Chen 1 , Xin Zhou 2
Nanotechnology Reviews ( IF 6.1 ) Pub Date : 2022-01-01 , DOI: 10.1515/ntrev-2022-0112 Zi-han Gao 1 , Han-jun Gao 1 , Yi-du Zhang 1 , Qiong Wu 1 , Shu-guang Chen 1 , Xin Zhou 2
Affiliation
Abstract The simulation model represents the microstructure that can accurately analyze and predict composites’ micro-stresses and mechanical properties. The conventional representative volume element (RVE) model can only contain one single-particle form. It makes that all the particles in the simulation model have the same shape, which is significantly different from actual particles. In the present study, four typical particle-modeling methods were adopted to establish geometric models to analyze the particle morphology and RVE size selection rules. Particles with the same granularity and similar volume were selected to generate RVE models with randomly distributed particles to predict the mechanical properties and analyze the micro-stress. The micro-stress distribution of the matrix and particles conformed to the rule of normal distribution, while the stress of the interphase does not conform to this law. The particle morphology has a negligible effect on the stress distribution of the matrix; however, it has a significant influence on the stress distribution of particles and interphases, especially during plastic deformation. Furthermore, the micro-stress of composites containing nanoparticles also conforms to the above law, but the stress of the interphase is more minor, and the stress of particles is more dispersed than composites with micron particles.
中文翻译:
基于微米和纳米颗粒微观结构模型的SiC/Al复合材料应力分布研究
摘要 模拟模型代表的微观结构可以准确地分析和预测复合材料的微应力和力学性能。传统的代表体积元(RVE)模型只能包含一种单粒子形式。它使模拟模型中的所有粒子具有相同的形状,这与实际粒子有很大的不同。在本研究中,采用四种典型的颗粒建模方法建立几何模型来分析颗粒形态和RVE尺寸选择规则。选取粒度相同、体积相近的颗粒生成随机分布颗粒的RVE模型,预测力学性能和分析微应力。基体和颗粒的微应力分布符合正态分布规律,而界面应力不符合正态分布规律。颗粒形态对基体应力分布的影响可以忽略不计;然而,它对颗粒和界面的应力分布有显着影响,特别是在塑性变形过程中。此外,含有纳米粒子的复合材料的微应力也符合上述规律,但相间的应力更小,粒子的应力比含有微米粒子的复合材料更分散。它对颗粒和界面的应力分布有显着影响,特别是在塑性变形过程中。此外,含有纳米粒子的复合材料的微应力也符合上述规律,但相间的应力更小,粒子的应力比含有微米粒子的复合材料更分散。它对颗粒和界面的应力分布有显着影响,特别是在塑性变形过程中。此外,含有纳米粒子的复合材料的微应力也符合上述规律,但相间的应力更小,粒子的应力比含有微米粒子的复合材料更分散。
更新日期:2022-01-01
中文翻译:
基于微米和纳米颗粒微观结构模型的SiC/Al复合材料应力分布研究
摘要 模拟模型代表的微观结构可以准确地分析和预测复合材料的微应力和力学性能。传统的代表体积元(RVE)模型只能包含一种单粒子形式。它使模拟模型中的所有粒子具有相同的形状,这与实际粒子有很大的不同。在本研究中,采用四种典型的颗粒建模方法建立几何模型来分析颗粒形态和RVE尺寸选择规则。选取粒度相同、体积相近的颗粒生成随机分布颗粒的RVE模型,预测力学性能和分析微应力。基体和颗粒的微应力分布符合正态分布规律,而界面应力不符合正态分布规律。颗粒形态对基体应力分布的影响可以忽略不计;然而,它对颗粒和界面的应力分布有显着影响,特别是在塑性变形过程中。此外,含有纳米粒子的复合材料的微应力也符合上述规律,但相间的应力更小,粒子的应力比含有微米粒子的复合材料更分散。它对颗粒和界面的应力分布有显着影响,特别是在塑性变形过程中。此外,含有纳米粒子的复合材料的微应力也符合上述规律,但相间的应力更小,粒子的应力比含有微米粒子的复合材料更分散。它对颗粒和界面的应力分布有显着影响,特别是在塑性变形过程中。此外,含有纳米粒子的复合材料的微应力也符合上述规律,但相间的应力更小,粒子的应力比含有微米粒子的复合材料更分散。