当前位置: X-MOL 学术Nanotechnol. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal valuation and entropy inspection of second-grade nanoscale fluid flow over a stretching surface by applying Koo–Kleinstreuer–Li relation
Nanotechnology Reviews ( IF 6.1 ) Pub Date : 2022-01-01 , DOI: 10.1515/ntrev-2022-0123
Faisal Shahzad 1 , Wasim Jamshed 1 , Rabia Safdar 2 , Nor Ain Azeany Mohd Nasir 3 , Mohamed R. Eid 4, 5 , Meznah M. Alanazi 6 , Heba Y. Zahran 7, 8
Affiliation  

Abstract There are flow research centers on magnetohydrodynamic (MHD) emission of auxiliary liquid in an extended region. The prevailing model is constrained by attractions/infusion and gooey release. The administering model is based on the Koo–Kleinstreuer–Li nanofluid model in the existence of entropy generation. Final requirements of this model are addressed by implementing the shooting strategy, which incorporates a fourth approach for the Runge–Kutta strategy. Into the bargain, the last adds (in standard ordinary differential equations (ODE) divisions) are obtained from the measurable controls partial differential equations, which were represented toward the start of the overseeing model. The varieties for all boundaries are exhibited through graphical arrangements. It is noticed that expanding the substantial volume portion diminishes speed but builds nuclear power dispersion. Likewise, the classification of mathematical qualities on divider heat move rate and skin contact is introduced. Both Reynolds and Brinkman numbers improve the entropy rate of the thermal system resulting in the growth effects of inertial forces and the surface heat dissipation, respectively.

中文翻译:

应用 Koo-Kleinstreuer-Li 关系对拉伸表面上二级纳米级流体流动的热评估和熵检测

摘要 在扩展区域内有辅助液体磁流体动力学(MHD)发射的流动研究中心。流行的模型受到吸引力/输液和粘性释放的限制。给药模型基于存在熵产生的 Koo-Kleinstreuer-Li 纳米流体模型。该模型的最终要求是通过实施射击策略来解决的,该策略结合了 Runge-Kutta 策略的第四种方法。在交易中,最后添加(在标准常微分方程 (ODE) 划分中)是从可测量的控制偏微分方程中获得的,这些方程在监督模型的开始时表示。所有边界的品种都通过图形排列来展示。值得注意的是,扩大实质体积部分会降低速度,但会增加核能分散。同样,介绍了分配器热移动速率和皮肤接触的数学性质的分类。雷诺数和布林克曼数都提高了热系统的熵率,分别导致惯性力的增长效应和表面散热。
更新日期:2022-01-01
down
wechat
bug