当前位置: X-MOL 学术Nanotechnol. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamics of convective slippery constraints on hybrid radiative Sutterby nanofluid flow by Galerkin finite element simulation
Nanotechnology Reviews ( IF 6.1 ) Pub Date : 2022-01-01 , DOI: 10.1515/ntrev-2022-0070
Jamel Bouslimi 1 , Ali A. Alkathiri 1 , Abdulaziz N. Alharbi 1 , Wasim Jamshed 2 , Mohamed R. Eid 3, 4 , Mohamed Lamjed Bouazizi 5
Affiliation  

Abstract The heat transport and entropy formation of an unsteady Sutterby hybrid nanofluid (SBHNF) are investigated in this work. SBHNF’s flowing and thermal transport properties are investigated by exposing the nanofluid to a slippery hot surface. This analysis includes the influences of solid-shaped nanoparticles, porous materials, radiative flux, and viscous dissipative flow. The Galerkin finite element technique (G-FEM) is used to find self-similar solutions to equations that are then transformed into ODEs using appropriate transformations. This research considers two diverse kinds of nanosolid-particles, copper (Cu) and graphene oxide (GO), using non-Newtonian engine-oil (EO) as the working fluid. In the flowing, energy, skin friction, Nusselt number, and entropy production, important findings for the various variables are visually depicted. The most notable finding of the analysis is that when SBHNF (GO–Cu/EO) is compared to a typical nanofluid (Cu–EO), the thermal transmission rate of SBHNF (GO–Cu/EO) gradually increases. Furthermore, heat transfer is greatest for spherical-shaped nanoparticles and lowest for lamina-shaped nanoparticles. The entropy in the model is increased when the size of the nanoparticles ϕ \phi is increased. The comparable impact is noticed once the radiation flowing N r {N}_{\text{r}} and Deborah number λ \lambda increase.

中文翻译:

伽辽金有限元模拟对混合辐射萨特比纳米流体流动的对流滑约束动力学

摘要 本文研究了非定常 Sutterby 混合纳米流体 (SBHNF) 的热传递和熵形成。通过将纳米流体暴露于光滑的热表面来研究 SBHNF 的流动和热传输特性。该分析包括固态纳米粒子、多孔材料、辐射通量和粘性耗散流的影响。Galerkin 有限元技术 (G-FEM) 用于找到方程的自相似解,然后使用适当的变换将其变换为 ODE。这项研究考虑了两种不同类型的纳米固体颗粒,铜 (Cu) 和氧化石墨烯 (GO),使用非牛顿发动机油 (EO) 作为工作流体。在流动、能量、皮肤摩擦、努塞尔数和熵产生中,对各种变量的重要发现进行了直观描述。分析中最值得注意的发现是,当将 SBHNF (GO-Cu/EO) 与典型的纳米流体 (Cu-EO) 进行比较时,SBHNF (GO-Cu/EO) 的传热率逐渐增加。此外,球形纳米颗粒的热传递最大,而薄片形纳米颗粒的热传递最低。当纳米粒子 φ \phi 的尺寸增加时,模型中的熵增加。
更新日期:2022-01-01
down
wechat
bug