当前位置:
X-MOL 学术
›
Nanotechnol. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Robust synthesis of a composite phase of copper vanadium oxide with enhanced performance for durable aqueous Zn-ion batteries
Nanotechnology Reviews ( IF 6.1 ) Pub Date : 2022-01-01 , DOI: 10.1515/ntrev-2022-0103 Haoyan Cheng 1 , Xuerong Li 1, 2 , Hao Hu 1 , Tongtong Yuan 1 , Shiqian Zhou 1 , Shuge Dai 3 , Di Zhang 4 , Kunming Pan 1, 2
Nanotechnology Reviews ( IF 6.1 ) Pub Date : 2022-01-01 , DOI: 10.1515/ntrev-2022-0103 Haoyan Cheng 1 , Xuerong Li 1, 2 , Hao Hu 1 , Tongtong Yuan 1 , Shiqian Zhou 1 , Shuge Dai 3 , Di Zhang 4 , Kunming Pan 1, 2
Affiliation
Abstract Rechargeable aqueous Zn-ion batteries (AZIBs) have attracted much interest as next-generation power sources due to their economical, safe, and capacity superiorities. However, the cathodes used in AZIBs always suffer from sluggish kinetics, inducing inadequate rate performance and poor cycle ability. Pre-intercalating transition metal element in the cathode materials offers an effective strategy for improving diffusion kinetics of Zn2+ and thus the electrochemical activity. In this work, different proportions of Cu pre-intercalated V2O5 were synthesized to form a composite phase of Cu0.4V2O5 and VO2·nH2O nanosheets through the hydrothermal method. The reversible redox reaction of Cu2+ and Cu0, accompanied by the phase changes of copper vanadate and zinc vanadate, contributes to an excellent battery performance. When the molar ratio between Cu precursor and commercial V2O5 in the reaction solution is 1:2, the obtained material presents an outstanding electrochemical performance with the initial discharge capacity of 332 mAh g−1 at 0.2 A g−1. The enlarged lattice distance together with the high conductivity leads to a high Zn ions diffusion rate of 10−5 cm2 s−1. Even after 1,000 cycles at a current density of 2 A g−1, the capacity attenuation is only 0.035% per cycle, exhibiting distinctive activities toward AZIBs.
中文翻译:
具有增强性能的铜钒氧化物复合相的稳健合成,用于耐用的水系锌离子电池
摘要 可充电水系锌离子电池(AZIBs)由于其经济、安全和容量优势,作为下一代电源引起了广泛关注。然而,AZIBs 中使用的正极总是存在动力学迟缓,导致倍率性能不足和循环能力差的问题。在正极材料中预嵌入过渡金属元素为提高 Zn2+ 的扩散动力学和电化学活性提供了有效的策略。本工作通过水热法合成了不同比例的Cu预插层V2O5,形成Cu0.4V2O5和VO2·nH2O纳米片的复合相。Cu2+和Cu0的可逆氧化还原反应,伴随着钒酸铜和钒酸锌的相变,有助于获得优异的电池性能。当反应溶液中Cu前驱体与商业V2O5的摩尔比为1:2时,所得材料表现出优异的电化学性能,在0.2 A g-1下的初始放电容量为332 mAh g-1。扩大的晶格距离和高电导率导致 10-5 cm2 s-1 的高 Zn 离子扩散速率。即使在 2 A g-1 的电流密度下循环 1,000 次后,每个循环的容量衰减也仅为 0.035%,表现出对 AZIB 的独特活性。
更新日期:2022-01-01
中文翻译:
具有增强性能的铜钒氧化物复合相的稳健合成,用于耐用的水系锌离子电池
摘要 可充电水系锌离子电池(AZIBs)由于其经济、安全和容量优势,作为下一代电源引起了广泛关注。然而,AZIBs 中使用的正极总是存在动力学迟缓,导致倍率性能不足和循环能力差的问题。在正极材料中预嵌入过渡金属元素为提高 Zn2+ 的扩散动力学和电化学活性提供了有效的策略。本工作通过水热法合成了不同比例的Cu预插层V2O5,形成Cu0.4V2O5和VO2·nH2O纳米片的复合相。Cu2+和Cu0的可逆氧化还原反应,伴随着钒酸铜和钒酸锌的相变,有助于获得优异的电池性能。当反应溶液中Cu前驱体与商业V2O5的摩尔比为1:2时,所得材料表现出优异的电化学性能,在0.2 A g-1下的初始放电容量为332 mAh g-1。扩大的晶格距离和高电导率导致 10-5 cm2 s-1 的高 Zn 离子扩散速率。即使在 2 A g-1 的电流密度下循环 1,000 次后,每个循环的容量衰减也仅为 0.035%,表现出对 AZIB 的独特活性。