Polymer Bulletin ( IF 3.1 ) Pub Date : 2021-09-20 , DOI: 10.1007/s00289-021-03890-9 Jingru Liu , Hongwei Liang
Morphological and structural properties of nano-zinc oxide/isotactic polypropylene (nano-ZnO/iPP) composites with different nano-ZnO concentrations before and after compatibilization were investigated by scanning electron microscopy (SEM), dynamic rheology, shear creep and creep-recovery measurements. The complex viscosity and storage modulus of the composite melts first decrease and then increase with increasing nano-ZnO loading. The pseudo-solid-like behavior appearing in high-loaded composites could be attributed to the formation of the filler percolation network resulting from particle–particle interactions. The incorporating of maleic anhydride/styrene-grafted random copolypropylene (MPP) brings about the reduction of the number of big agglomerates of nano-ZnO, followed by the decrease in modulus and viscosity. Large nano-ZnO agglomerates or more complete percolation network formation enhances the creep resistance of iPP. This finding is explained by the existence of long relaxation time in the high-loaded system assigned to the relaxation of the iPP chains attached to the particle surface. Moreover, MPP has a pronounced influence on the shear creep and recovery behavior of the composites. Weighted relaxation spectra calculated from the dynamic frequency sweep together with shear creep and recovery curves quantify these assumptions. Dynamic rheology and shear creep and creep-recovery measurements are sensitive tools to get insights into the dispersion state of nanoparticles in the polymer composites, as well as the interactions (i.e., particle-polymer interaction, particle–particle interaction) in such systems.
中文翻译:
用动态流变学、蠕变和剪切回复研究填充纳米氧化锌的全同立构聚丙烯的形态和结构性能
通过扫描电子显微镜 (SEM)、动态流变学、剪切蠕变和蠕变恢复测量研究了增容前后不同纳米 ZnO 浓度的纳米氧化锌/等规聚丙烯 (nano-ZnO/iPP) 复合材料的形貌和结构性能. 复合材料熔体的复数粘度和储能模量随着纳米ZnO负载量的增加先减小后增大。高负载复合材料中出现的拟固体状行为可归因于颗粒 - 颗粒相互作用导致的填料渗透网络的形成。马来酸酐/苯乙烯接枝无规共聚丙烯(MPP)的加入导致纳米氧化锌大团聚体的数量减少,随后模量和粘度降低。大的纳米 ZnO 团聚体或更完整的渗透网络形成增强了 iPP 的抗蠕变性。这一发现可以通过高负载系统中存在较长的弛豫时间来解释,这归因于附着在粒子表面的 iPP 链的弛豫。此外,MPP 对复合材料的剪切蠕变和恢复行为有显着影响。从动态频率扫描计算的加权弛豫谱与剪切蠕变和恢复曲线一起量化了这些假设。动态流变学和剪切蠕变以及蠕变恢复测量是深入了解纳米粒子在聚合物复合材料中的分散状态以及此类系统中的相互作用(即粒子-聚合物相互作用、粒子-粒子相互作用)的敏感工具。