当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Regulating *OCHO Intermediate as Rate-Determining Step of Defective Oxynitride Nanosheets Enabling Robust CO2 Electroreduction
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2022-06-03 , DOI: 10.1002/aenm.202200321 Bo Zhang 1 , Yuan Chang 2 , Yunzhen Wu 1 , Zhaozhong Fan 1 , Panlong Zhai 1 , Chen Wang 1 , Junfeng Gao 2 , Licheng Sun 3, 4 , Jungang Hou 1
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2022-06-03 , DOI: 10.1002/aenm.202200321 Bo Zhang 1 , Yuan Chang 2 , Yunzhen Wu 1 , Zhaozhong Fan 1 , Panlong Zhai 1 , Chen Wang 1 , Junfeng Gao 2 , Licheng Sun 3, 4 , Jungang Hou 1
Affiliation
The electrochemical conversion of CO2 into hydrocarbons is an important approach to store sustainable energy and address climate concerns. However, it is a huge challenge to unearth a promising model for elucidating the role of dopants and vacancies on catalysts upon CO2 electroreduction. Herein, porous indium oxynitride nanosheets with simultaneous incorporation of nitrogen dopant and oxygen vacancy (Vo-N-InON) are reported for achieving efficient CO2 conversion to formic acid (HCOOH). As a result, the catalyst exhibits an extremely high formate selectivity of 95.1% at a low potential of −0.8 V versus reversible hydrogen electrode (RHE) compared with pristine In2O3, Vo-In2O3, and InN, delivering a large partial current density of 121.1 mA cm–2 for formate production at −1.13 V versus RHE in the flow cell. Density functional theory calculations reveal that the generation of *OCHO intermediate is the rate-determining step. The synergistic effect between nitrogen dopants and oxygen vacancies contributes to the activation of CO2, facilitates the charge transfer, and reduces the reaction free energy of *OCHO protonation. This work not only discloses a fundamental understanding of synergistic effects between nitrogen dopants and oxygen vacancies to improve catalytic performance, but also provides an effective platform toward CO2 conversion.
中文翻译:
调节 *OCHO 中间体作为有缺陷的氧氮化物纳米片的速率确定步骤,实现稳健的 CO2 电还原
CO 2电化学转化为碳氢化合物是储存可持续能源和解决气候问题的重要方法。然而,发掘一个有前途的模型来阐明掺杂剂和空位在催化剂上对 CO 2电还原的作用是一个巨大的挑战。本文报道了同时掺入氮掺杂剂和氧空位 (V o -N-InON) 的多孔氧氮化铟纳米片可实现 CO 2向甲酸 (HCOOH) 的高效转化。因此,与原始 In 2 O 3、V o相比,该催化剂在 -0.8 V 的低电势下与可逆氢电极 (RHE) 相比,表现出 95.1% 的极高甲酸盐选择性。-In 2 O 3和 InN 提供 121.1 mA cm –2的大部分电流密度,用于在 -1.13 V 下与流通池中的 RHE 相比产生甲酸盐。密度泛函理论计算表明,*OCHO 中间体的生成是速率决定步骤。氮掺杂剂与氧空位的协同作用有助于CO 2的活化,促进电荷转移,降低*OCHO质子化的反应自由能。这项工作不仅揭示了氮掺杂剂和氧空位之间的协同效应以提高催化性能的基本认识,而且还为CO 2转化提供了一个有效的平台。
更新日期:2022-06-03
中文翻译:
调节 *OCHO 中间体作为有缺陷的氧氮化物纳米片的速率确定步骤,实现稳健的 CO2 电还原
CO 2电化学转化为碳氢化合物是储存可持续能源和解决气候问题的重要方法。然而,发掘一个有前途的模型来阐明掺杂剂和空位在催化剂上对 CO 2电还原的作用是一个巨大的挑战。本文报道了同时掺入氮掺杂剂和氧空位 (V o -N-InON) 的多孔氧氮化铟纳米片可实现 CO 2向甲酸 (HCOOH) 的高效转化。因此,与原始 In 2 O 3、V o相比,该催化剂在 -0.8 V 的低电势下与可逆氢电极 (RHE) 相比,表现出 95.1% 的极高甲酸盐选择性。-In 2 O 3和 InN 提供 121.1 mA cm –2的大部分电流密度,用于在 -1.13 V 下与流通池中的 RHE 相比产生甲酸盐。密度泛函理论计算表明,*OCHO 中间体的生成是速率决定步骤。氮掺杂剂与氧空位的协同作用有助于CO 2的活化,促进电荷转移,降低*OCHO质子化的反应自由能。这项工作不仅揭示了氮掺杂剂和氧空位之间的协同效应以提高催化性能的基本认识,而且还为CO 2转化提供了一个有效的平台。