International Journal of Computer Assisted Radiology and Surgery ( IF 2.3 ) Pub Date : 2022-06-03 , DOI: 10.1007/s11548-022-02675-3 Jan Gaebel 1 , Stefanie Mehlhorn 1, 2 , Alexander Oeser 1 , Andreas Dietz 2 , Thomas Neumuth 1 , Matthaeus Stoehr 2
Purpose
Treatment decisions in oncology are demanding and affect survival, general health, and quality of life. Expert systems can handle the complexity of the oncological field. We propose the application of a hybrid modeling approach for decision support models consisting of expert-based implementation of a decision model structure and machine-learning (ML) based parameter generation. We demonstrate our approach for the treatment of oropharyngeal cancer.
Methods
We created a clinical decision model based on Bayesian Networks and iteratively optimized its characteristics using structured knowledge engineering approaches. We combined manual adaptation of individual concepts with automatic learning of parameters and causalities. Using data from 94 patient records, we targeted the needed objectivity and clinical significance.
Results
In three iteration steps, we assessed the model with cross-validations. The initial aggregated accuracy of 0.529 could be increased to 0.883 in the final version. The predictive rates of the target nodes range from 0.557 to 0.960.
Conclusion
Combining different methodological approaches requires balancing the complexity of the clinical subject matter with the amount of information available in the dataset for ML application. Our method showed promising results because flaws of one approach can be overcome by the other approach. However, technical integrability as well as clinical acceptance must always be ensured.
中文翻译:
口咽癌治疗的临床决策支持模型:多阶段知识抽象和形式化过程的设计和评估
目的
肿瘤学中的治疗决策要求很高,并且会影响生存、总体健康和生活质量。专家系统可以处理肿瘤领域的复杂性。我们建议将混合建模方法应用于决策支持模型,包括基于专家的决策模型结构实现和基于机器学习 (ML) 的参数生成。我们展示了我们治疗口咽癌的方法。
方法
我们创建了一个基于贝叶斯网络的临床决策模型,并使用结构化知识工程方法迭代优化其特征。我们将单个概念的手动调整与参数和因果关系的自动学习相结合。使用来自 94 名患者记录的数据,我们针对所需的客观性和临床意义。
结果
在三个迭代步骤中,我们使用交叉验证评估了模型。在最终版本中,0.529 的初始聚合准确度可以提高到 0.883。目标节点的预测率范围从 0.557 到 0.960。
结论
结合不同的方法需要平衡临床主题的复杂性与数据集中可用于 ML 应用的信息量。我们的方法显示出有希望的结果,因为一种方法的缺陷可以通过另一种方法来克服。但是,必须始终确保技术可集成性和临床可接受性。