严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 已导致 2019 年冠状病毒病 (COVID-19) 全球大流行。Omicron是SARS-CoV-2的一种新变种,具有传播性和致病性强、潜伏期短、发病进展快等特点,在全球范围内迅速传播。SARS-CoV-2 的高复制率和细胞内积累是显着的,但潜在的分子机制仍不清楚。自噬作为一种保守的细胞防御机制来抵御入侵的病原体。在这里,我们提供证据表明 SARS-CoV-2 的主要蛋白酶 NSP5 可有效切割选择性自噬受体 p62。NSP5 靶向 p62 在 354 位谷氨酸处切割,从而消除 p62 介导选择性自噬的能力。进一步表明,p62 与泛素化的 SARS-CoV-2 M(病毒膜蛋白)特异性相互作用,以促进其自噬降解。在 NSP5 存在下,p62 介导的 M 蛋白自噬降解受到抑制。p62的裂解产物也不能促进M蛋白的降解。总的来说,我们的研究结果表明 p62 是 SARS-CoV-2 NSP5 的新宿主靶标,并表明选择性自噬靶向病毒以及病毒逃避自噬清除的潜在策略。我们的研究结果可能为开发基于自噬和 NSP5 的抗 COVID-19 药物提供新思路。p62的裂解产物也不能促进M蛋白的降解。总的来说,我们的研究结果表明 p62 是 SARS-CoV-2 NSP5 的新宿主靶标,并表明选择性自噬靶向病毒以及病毒逃避自噬清除的潜在策略。我们的研究结果可能为开发基于自噬和 NSP5 的抗 COVID-19 药物提供新思路。p62的裂解产物也不能促进M蛋白的降解。总的来说,我们的研究结果表明 p62 是 SARS-CoV-2 NSP5 的新宿主靶标,并表明选择性自噬靶向病毒以及病毒逃避自噬清除的潜在策略。我们的研究结果可能为开发基于自噬和 NSP5 的抗 COVID-19 药物提供新思路。
"点击查看英文标题和摘要"
Cleavage of the selective autophagy receptor SQSTM1/p62 by the SARS-CoV-2 main protease NSP5 prevents the autophagic degradation of viral membrane proteins
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the coronavirus disease 2019 (COVID-19) global pandemic. Omicron, a new variant of SARS-CoV-2, has the characteristics of strong transmission and pathogenicity, short incubation period, and rapid onset progression, and has spread rapidly around the world. The high replication rate and intracellular accumulation of SARS-CoV-2 are remarkable, but the underlying molecular mechanisms remain unclear. Autophagy acts as a conservative cellular defence mechanism against invading pathogens. Here, we provide evidence that the main protease of SARS-CoV-2, NSP5, effectively cleaves the selective autophagy receptor p62. NSP5 targets p62 for cleavage at glutamic acid 354 and thus abolishes the capacity of p62 to mediate selective autophagy. It was further shown that p62 specifically interacted with ubiquitinated SARS-CoV-2 M, the viral membrane protein, to promote its autophagic degradation. In the presence of NSP5, p62-mediated autophagic degradation of the M protein was inhibited. The cleaved products of p62 also cannot facilitate the degradation of the M protein. Collectively, our findings reveal that p62 is a novel host target of SARS-CoV-2 NSP5 and suggest that selective autophagy targets viruses and potential strategies by which the virus evades autophagic clearance. Our results may provide new ideas for the development of anti-COVID-19 drugs based on autophagy and NSP5.