Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Water-Induced Self-Assembly and In Situ Mineralization within Plant Phenolic Glycol-Gel toward Ultrastrong and Multifunctional Thermal Insulating Aerogels
ACS Nano ( IF 15.8 ) Pub Date : 2022-06-02 , DOI: 10.1021/acsnano.2c00755 Qi Fan 1, 2, 3 , Rongxian Ou 1, 2, 3 , Xiaolong Hao 1, 2, 3 , Qianyun Deng 2 , Zhenzhen Liu 1, 2, 3 , Lichao Sun 2, 3 , Chaoqun Zhang 2, 3 , Chuigen Guo 1, 2, 3 , Xiaojing Bai 4 , Qingwen Wang 1, 2, 3
ACS Nano ( IF 15.8 ) Pub Date : 2022-06-02 , DOI: 10.1021/acsnano.2c00755 Qi Fan 1, 2, 3 , Rongxian Ou 1, 2, 3 , Xiaolong Hao 1, 2, 3 , Qianyun Deng 2 , Zhenzhen Liu 1, 2, 3 , Lichao Sun 2, 3 , Chaoqun Zhang 2, 3 , Chuigen Guo 1, 2, 3 , Xiaojing Bai 4 , Qingwen Wang 1, 2, 3
Affiliation
Biopolymer/silica nanocomposite aerogels are highly attractive as thermally insulating materials for prevailing energy-saving engineering but are usually plagued by their lack of mechanical strength and environmental stability. Lignin is an appealing plant phenolic biopolymer due to its natural abundance, high stiffness, water repellency, and thermostability. However, integrating lignin and silica into high-performance 3D hybrid aerogels remains a substantial challenge due to the unstable co-sol process. In diatoms, the silicic acid stabilization prior to the condensation reaction is enhanced by the intervention of biomolecules in noncovalent interactions. Inspired by this mechanism, we herein rationally design an ultrastrong silica-mineralized lignin nanocomposite aerogel (LigSi) with an adjustable multilevel micro/nanostructure and arbitrary machinability through an unusual water-induced self-assembly and in situ mineralization based on ethylene glycol-stabilized lignin/siloxane colloid. The optimized LigSi exhibits an ultrahigh stiffness (a specific modulus of ∼376.3 kN m kg–1) and can support over 5000 times its own weight without obvious deformation. Moreover, the aerogel demonstrates a combination of outstanding properties, including superior and humidity-tolerant thermal insulation (maintained at ∼0.04 W m–1 K–1 under a relative humidity of 33–94%), excellent fire resistance withstanding an ∼1200 °C flame without disintegration, low near-infrared absorption (∼9%), and intrinsic self-cleaning/superhydrophobic performance (158° WCA). These advanced properties make it an ideal thermally insulating material for diversified applications in harsh environments. As a proof of concept, a dual-mode LigSi thermal device was designed to demonstrate the application prospect of combining passive heat-trapping and active heating in the building.
中文翻译:
植物酚醛乙二醇凝胶中水诱导自组装和原位矿化制备超强多功能隔热气凝胶
生物聚合物/二氧化硅纳米复合气凝胶作为隔热材料在流行的节能工程中极具吸引力,但通常受到机械强度和环境稳定性不足的困扰。木质素是一种有吸引力的植物酚类生物聚合物,因为它天然丰富、硬度高、防水和热稳定性好。然而,由于不稳定的共溶胶过程,将木质素和二氧化硅整合到高性能 3D 混合气凝胶中仍然是一个巨大的挑战。在硅藻中,生物分子在非共价相互作用中的干预增强了缩合反应前硅酸的稳定性。受此机制启发,基于乙二醇稳定的木质素/硅氧烷胶体的原位矿化。优化后的 LigSi 表现出超高刚度(比模量为 ∼376.3 kN m kg –1),可以支撑超过自身重量 5000 倍的重量而不会发生明显变形。此外,该气凝胶展示了出色性能的组合,包括卓越且耐湿的隔热性能(保持在 ∼0.04 W m –1 K –1在 33-94% 的相对湿度下,具有出色的耐火性,可承受 ~1200 °C 的火焰而不分解,低近红外吸收(~9%),以及固有的自清洁/超疏水性能(158° WCA)。这些先进的性能使其成为恶劣环境下多样化应用的理想隔热材料。作为概念验证,设计了双模 LigSi 热器件,以展示结合被动热捕获和主动加热在建筑物中的应用前景。
更新日期:2022-06-02
中文翻译:
植物酚醛乙二醇凝胶中水诱导自组装和原位矿化制备超强多功能隔热气凝胶
生物聚合物/二氧化硅纳米复合气凝胶作为隔热材料在流行的节能工程中极具吸引力,但通常受到机械强度和环境稳定性不足的困扰。木质素是一种有吸引力的植物酚类生物聚合物,因为它天然丰富、硬度高、防水和热稳定性好。然而,由于不稳定的共溶胶过程,将木质素和二氧化硅整合到高性能 3D 混合气凝胶中仍然是一个巨大的挑战。在硅藻中,生物分子在非共价相互作用中的干预增强了缩合反应前硅酸的稳定性。受此机制启发,基于乙二醇稳定的木质素/硅氧烷胶体的原位矿化。优化后的 LigSi 表现出超高刚度(比模量为 ∼376.3 kN m kg –1),可以支撑超过自身重量 5000 倍的重量而不会发生明显变形。此外,该气凝胶展示了出色性能的组合,包括卓越且耐湿的隔热性能(保持在 ∼0.04 W m –1 K –1在 33-94% 的相对湿度下,具有出色的耐火性,可承受 ~1200 °C 的火焰而不分解,低近红外吸收(~9%),以及固有的自清洁/超疏水性能(158° WCA)。这些先进的性能使其成为恶劣环境下多样化应用的理想隔热材料。作为概念验证,设计了双模 LigSi 热器件,以展示结合被动热捕获和主动加热在建筑物中的应用前景。