当前位置:
X-MOL 学术
›
J. Am. Math. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Kudla–Rapoport cycles and derivatives of local densities
Journal of the American Mathematical Society ( IF 3.5 ) Pub Date : 2021-09-10 , DOI: 10.1090/jams/988 Chao Li , Wei Zhang
Journal of the American Mathematical Society ( IF 3.5 ) Pub Date : 2021-09-10 , DOI: 10.1090/jams/988 Chao Li , Wei Zhang
Abstract:We prove the local Kudla–Rapoport conjecture, which is a precise identity between the arithmetic intersection numbers of special cycles on unitary Rapoport–Zink spaces and the derivatives of local representation densities of hermitian forms. As a first application, we prove the global Kudla–Rapoport conjecture, which relates the arithmetic intersection numbers of special cycles on unitary Shimura varieties and the central derivatives of the Fourier coefficients of incoherent Eisenstein series. Combining previous results of Liu and Garcia–Sankaran, we also prove cases of the arithmetic Siegel–Weil formula in any dimension.
中文翻译:
Kudla-Rapoport 循环和局部密度的导数
摘要:我们证明了局部 Kudla-Rapoport 猜想,它是酉 Rapoport-Zink 空间上特殊循环的算术交集数与 Hermitian 形式的局部表示密度导数之间的精确恒等式。作为第一个应用,我们证明了全局 Kudla-Rapoport 猜想,该猜想将酉 Shimura 簇上特殊循环的算术交集数与非相干 Eisenstein 级数的傅立叶系数的中心导数联系起来。结合 Liu 和 Garcia-Sankaran 之前的结果,我们还证明了算术 Siegel-Weil 公式在任何维度上的情况。
更新日期:2021-09-10
中文翻译:
Kudla-Rapoport 循环和局部密度的导数
摘要:我们证明了局部 Kudla-Rapoport 猜想,它是酉 Rapoport-Zink 空间上特殊循环的算术交集数与 Hermitian 形式的局部表示密度导数之间的精确恒等式。作为第一个应用,我们证明了全局 Kudla-Rapoport 猜想,该猜想将酉 Shimura 簇上特殊循环的算术交集数与非相干 Eisenstein 级数的傅立叶系数的中心导数联系起来。结合 Liu 和 Garcia-Sankaran 之前的结果,我们还证明了算术 Siegel-Weil 公式在任何维度上的情况。