当前位置: X-MOL 学术Nat. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deep learning study of tyrosine reveals that roaming can lead to photodamage
Nature Chemistry ( IF 19.2 ) Pub Date : 2022-06-02 , DOI: 10.1038/s41557-022-00950-z
Julia Westermayr 1, 2 , Michael Gastegger 3 , Dóra Vörös 1 , Lisa Panzenboeck 1, 4 , Florian Joerg 1, 5 , Leticia González 1, 6 , Philipp Marquetand 1, 6, 7
Affiliation  

Amino acids are among the building blocks of life, forming peptides and proteins, and have been carefully ‘selected’ to prevent harmful reactions caused by light. To prevent photodamage, molecules relax from electronic excited states to the ground state faster than the harmful reactions can occur; however, such photochemistry is not fully understood, in part because theoretical simulations of such systems are extremely expensive—with only smaller chromophores accessible. Here, we study the excited-state dynamics of tyrosine using a method based on deep neural networks that leverages the physics underlying quantum chemical data and combines different levels of theory. We reveal unconventional and dynamically controlled ‘roaming’ dynamics in excited tyrosine that are beyond chemical intuition and compete with other ultrafast deactivation mechanisms. Our findings suggest that the roaming atoms are radicals that can lead to photodamage, offering a new perspective on the photostability and photodamage of biological systems.



中文翻译:

酪氨酸的深度学习研究表明漫游会导致光损伤

氨基酸是生命的基石之一,形成肽和蛋白质,并经过精心“选择”以防止由光引起的有害反应。为了防止光损伤,分子从电子激发态弛豫到基态的速度快于有害反应发生的速度;然而,这种光化学还没有被完全理解,部分原因是这种系统的理论模拟非常昂贵——只能获得较小的发色团。在这里,我们使用基于深度神经网络的方法研究酪氨酸的激发态动力学,该方法利用量子化学数据背后的物理学并结合不同层次的理论。我们揭示了兴奋酪氨酸中非常规和动态控制的“漫游”动力学,这些动力学超出了化学直觉,并与其他超快失活机制竞争。

更新日期:2022-06-02
down
wechat
bug