Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
2-氧代己二酸脱氢酶抑制对大鼠脑代谢的延迟影响与蛋白质戊二酰化有关
Frontiers in Medicine
(
IF
3.1
)
Pub Date : 2022-06-01
, DOI:
10.3389/fmed.2022.896263
Alexandra I Boyko
1
,
Irina S Karlina
2
,
Lev G Zavileyskiy
1
,
Vasily A Aleshin
3,
4
,
Artem V Artiukhov
3,
4
,
Thilo Kaehne
5
,
Alexander L Ksenofontov
3
,
Sergey I Ryabov
6
,
Anastasia V Graf
3,
7,
8
,
Angela Tramonti
9
,
Victoria I Bunik
1,
3,
4
Affiliation
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.
- N.V. Sklifosovsky Institute of Clinical Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
- Department of Biological Chemistry, Sechenov First Moscow State Medical University, Moscow, Russia.
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany.
- Russian Cardiology Research and Production Complex, Ministry of Health of the Russian Federation, Moscow, Russia.
- Faculty of Nano-, Bio-, Informational, Cognitive and Socio-Humanistic Sciences and Technologies, Moscow Institute of Physics and Technology, Moscow, Russia.
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
- Institute of Molecular Biology and Pathology, Council of National Research, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University, Rome, Italy.
Background这DHTKD1编码的 2-氧代己二酸脱氢酶 (OADH) 氧化 2-氧代己二酸——赖氨酸和色氨酸分解代谢的常见中间体。通过这些途径的大多数低通量和细胞特异性通量,以及 OADH 和普遍表达的 2-酮戊二酸脱氢酶 (OGDH) 的相似活性,与杂合突变的无症状表型一致。DHTKD1基因。尽管如此,OADH/DHTKD1与胰岛素敏感性受损、心血管疾病风险和 Charcot-Marie-Tooth 神经病变有关。我们假设 OADH 的系统意义依赖于其生成用于蛋白质戊二酰化的戊二酰残基。使用 OADH 的药理抑制作用和脊髓损伤 (SCI) 的动物模型,我们探讨了这一假设。
MethodsSCI 的体重下降模型、OADH 定向抑制剂三甲基己二酰膦酸酯 (TMAP) 的单次鼻内给药以及大鼠脑中相关代谢变化的量化采用已建立的方法。
ResultsTMAP 诱导的对照、椎板切除 (LE) 和 SCI 大鼠大脑中的代谢变化是长期的和(病理)生理依赖性的。与对照和 LE 大鼠中 OADH 表达成比例的脑蛋白戊二酰化增加代表了 OADH 抑制的长期后果。比例性表明 OADH 的自戊二酰化,这得到我们对重组人 OADH 中戊二酰化 K155 和 K818 的质谱鉴定的支持。在 SCI 大鼠中,TMAP 比 OADH 表达更多地增加脑蛋白的戊二酰化,从而在脑谷胱甘肽代谢中引起强烈扰动。TMAP 在 LE 动物中不会干扰氧化还原代谢,其中 OADH 的抑制会增加去戊二烯酶 sirtuin 5 的表达。结果揭示了脑谷胱甘肽代谢的戊二酰化控制。在大鼠脑中检测到 K451 处丙酮酸脱氢酶复合物 ODP2 亚基的戊二酰化,将 OADH 功能与氧化还原状态所必需的脑葡萄糖氧化联系起来。TMAP 对 OADH 的短期抑制表现为大脑中色氨酸水平升高和 sirtuins 5 和 3 水平降低。
ConclusionOADH 的药理抑制作用会影响大脑的酰化系统,导致 OADH 和 sirtuin 5 的表达、蛋白质戊二酰化和谷胱甘肽代谢发生长期的(病理)生理依赖性变化。已鉴定的丙酮酸脱氢酶复合物 ODP2 亚基的戊二酰化提供了 OADH 与糖尿病相关的分子机制。
"点击查看英文标题和摘要"
Delayed Impact of 2-Oxoadipate Dehydrogenase Inhibition on the Rat Brain Metabolism Is Linked to Protein Glutarylation
BackgroundThe DHTKD1-encoded 2-oxoadipate dehydrogenase (OADH) oxidizes 2-oxoadipate—a common intermediate of the lysine and tryptophan catabolism. The mostly low and cell-specific flux through these pathways, and similar activities of OADH and ubiquitously expressed 2-oxoglutarate dehydrogenase (OGDH), agree with often asymptomatic phenotypes of heterozygous mutations in the DHTKD1 gene. Nevertheless, OADH/DHTKD1 are linked to impaired insulin sensitivity, cardiovascular disease risks, and Charcot-Marie-Tooth neuropathy. We hypothesize that systemic significance of OADH relies on its generation of glutaryl residues for protein glutarylation. Using pharmacological inhibition of OADH and the animal model of spinal cord injury (SCI), we explore this hypothesis.
MethodsThe weight-drop model of SCI, a single intranasal administration of an OADH-directed inhibitor trimethyl adipoyl phosphonate (TMAP), and quantification of the associated metabolic changes in the rat brain employ established methods.
ResultsThe TMAP-induced metabolic changes in the brain of the control, laminectomized (LE) and SCI rats are long-term and (patho)physiology-dependent. Increased glutarylation of the brain proteins, proportional to OADH expression in the control and LE rats, represents a long-term consequence of the OADH inhibition. The proportionality suggests autoglutarylation of OADH, supported by our mass-spectrometric identification of glutarylated K155 and K818 in recombinant human OADH. In SCI rats, TMAP increases glutarylation of the brain proteins more than OADH expression, inducing a strong perturbation in the brain glutathione metabolism. The redox metabolism is not perturbed by TMAP in LE animals, where the inhibition of OADH increases expression of deglutarylase sirtuin 5. The results reveal the glutarylation-imposed control of the brain glutathione metabolism. Glutarylation of the ODP2 subunit of pyruvate dehydrogenase complex at K451 is detected in the rat brain, linking the OADH function to the brain glucose oxidation essential for the redox state. Short-term inhibition of OADH by TMAP administration manifests in increased levels of tryptophan and decreased levels of sirtuins 5 and 3 in the brain.
ConclusionPharmacological inhibition of OADH affects acylation system of the brain, causing long-term, (patho)physiology-dependent changes in the expression of OADH and sirtuin 5, protein glutarylation and glutathione metabolism. The identified glutarylation of ODP2 subunit of pyruvate dehydrogenase complex provides a molecular mechanism of the OADH association with diabetes.
更新日期:2022-06-01