Journal of Mathematical Imaging and Vision ( IF 1.3 ) Pub Date : 2022-06-01 , DOI: 10.1007/s10851-022-01101-2 Sameer Agarwal , Andrew Pryhuber , Rainer Sinn , Rekha R. Thomas
We introduce the chiral domain of an arrangement of cameras \(\mathcal {A} = \{A_1,..., A_m\}\) which is the subset of \(\mathbb {P}^3\) visible in \(\mathcal {A}\). It generalizes the classical definition of chirality to include all of \(\mathbb {P}^3\) and offers a unifying framework for studying multiview chirality. We give an algebraic description of the chiral domain which allows us to define and describe the chiral version of Triggs’ joint image. We then use the chiral domain to re-derive and extend prior results on chirality due to Hartley.
中文翻译:
相机排列的手征域
我们介绍了相机排列的手征域\(\mathcal {A} = \{A_1,..., A_m\}\),它是\(\mathbb {P}^3\)的子集(\mathcal {A}\)。它概括了手性的经典定义以包括所有\(\mathbb {P}^3\),并为研究多视图手性提供了一个统一的框架。我们给出了手征域的代数描述,它允许我们定义和描述 Triggs 联合图像的手征版本。然后,我们使用手性域重新推导和扩展 Hartley 的手性先前结果。