当前位置: X-MOL 学术Annu. Rev. Earth Planet. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deciphering Temperature Seasonality in Earth's Ancient Oceans
Annual Review of Earth and Planetary Sciences ( IF 11.3 ) Pub Date : 2022-05-31 , DOI: 10.1146/annurev-earth-032320-095156
Linda C. Ivany 1 , Emily J. Judd 2
Affiliation  

Ongoing global warming due to anthropogenic climate change has long been recognized, yet uncertainties regarding how seasonal extremes will change in the future persist. Paleoseasonal proxy data from intervals when global climate differed from today can help constrain how and why the annual temperature cycle has varied through space and time. Records of past seasonal variation in marine temperatures are available in the oxygen isotope values of serially sampled accretionary organisms. The most useful data sets come from carefully designed and computationally robust studies that enable characterization of paleoseasonal parameters and seamless integration with mean annual temperature data sets and climate models. Seasonal data sharpen interpretations of—and quantify overlooked or unconstrained seasonal biases in—the more voluminous mean temperature data and aid in the evaluation of climate model performance. Methodologies to rigorously analyze seasonal data are now available, and the promise of paleoseasonal proxy data for the next generation of paleoclimate research is significant.

The seasonal cycle defines climate and its constraints on biology, both today and in the deep past.

Paleoseasonal data improve proxy-based estimates of mean annual temperature and validate Earth System Model simulations.

Large, internally consistent data sets can reveal robust spatiotemporal climate patterns on the ancient Earth and how they change with pCO2.

Computational tools enable rigorous numerical analysis of paleoseasonal data for comparison with other paleoclimate data and model output.



中文翻译:

破译地球古代海洋的温度季节性

由于人为气候变化导致的持续全球变暖早已得到认可,但关于未来季节性极端事件将如何变化的不确定性仍然存在。来自全球气候与今天不同的时间间隔的古季节性代理数据可以帮助限制年度温度循环如何以及为什么随着空间和时间而变化。在连续采样的增生生物的氧同位素值中可以获得过去海洋温度季节性变化的记录。最有用的数据集来自精心设计和计算稳健的研究,这些研究能够表征古季节性参数并与年平均温度数据集和气候模型无缝集成。季节性数据加强了对海量平均温度数据的解释——并量化了被忽视或不受约束的季节性偏差,并有助于评估气候模型的性能。现在可以使用严格分析季节性数据的方法,并且古季节性代理数据对下一代古气候研究的前景意义重大。

季节性周期定义了气候及其对生物学的限制,无论是今天还是过去。

古季节性数据改进了基于代理的年平均温度估计,并验证了地球系统模型模拟。

内部一致的大型数据集可以揭示古代地球上强大的时空气候模式以及它们如何随p CO 2变化。

计算工具可以对古季节性数据进行严格的数值分析,以便与其他古气候数据和模型输出进行比较。

更新日期:2022-06-01
down
wechat
bug