Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2022-05-30 , DOI: 10.1016/j.cej.2022.137290
Tingting Li , Ruisong Guo , Leichao Meng , Xiaohong Sun , Yang Li , Fuyun Li , Xinqi Zhao , Lingyun An , Jianhong Peng , Wenjun Wang
![]() |
Aqueous zinc ion batteries (AZIBs) have become one of the most prospective energy storage devices due to their low cost, abundant resources, and hypotoxicity. However, AZIBs suffer from a bottleneck, that is, significant capacity fading during long cycle and bad performance at a high current density. In this work, we report a valuable cooperation strategy of multiphase Mn-based oxides (N-Mn3O4/MnO) via a two-step solvothermal method to obtain an attractive cathode for AZIBs. The high reversible specific capacity and superior rate capability of this cathode result from the facile charge transfer channel and ions (Zn2+/H+) insertion in the porous heterostructures featuring phase stability caused by the synergistic effects of N-doping, heterojunction and porous micron cage. Because the d-band centers of N-doped Mn3O4 are closer to the Fermi level, they are looked forward to overcoming the intrinsic activation barrier more effectively and promoting the reaction kinetics for electrochemical reactions. The N-Mn3O4/MnO cathode demonstrates a reversible specific capacity of 227.8 mAh g-1 over 1500 cycles at 5 A g-1. The capacity retention reaches up to 92.2% regarding the stable capacity of 247.2 mAh g-1 as the reference. The capacity retention rate of 77.2% and a loss of only 0.0091% per cycle are achieved at a high current density of 10 A g-1 for 2500 cycles. These results all prove the advantages of N-Mn3O4/MnO of the hybrid material. The meaning of this work is to put forward a compositional and structural design strategy for the Zn-Mn system for the cost-effective and high-performance rechargeable AZIBs. Besides, the application of a novel water-soluble binder (LA133) to AZIBs in this work is a solid step for the practical application of AZIBs.
中文翻译:

用于高性能 AZIB 的具有微米笼结构的 Mn3O4 稳定的多相氧化锰
水系锌离子电池(AZIBs)具有成本低、资源丰富、毒性低等优点,已成为最有前景的储能装置之一。然而,AZIBs 存在瓶颈,即在长循环期间显着容量衰减和在高电流密度下性能不佳。在这项工作中,我们报告了一种有价值的多相 Mn 基氧化物 (N-Mn 3 O 4 /MnO) 的合作策略,通过两步溶剂热法获得有吸引力的 AZIB 正极。这种正极的高可逆比容量和优异的倍率性能是由于电荷转移通道和离子(Zn 2+ /H +) 插入具有相稳定性的多孔异质结构,这是由 N 掺杂、异质结和多孔微米笼的协同效应引起的。由于N掺杂Mn 3 O 4的d带中心更接近费米能级,因此有望更有效地克服本征活化势垒,促进电化学反应的反应动力学。N-Mn 3 O 4 /MnO 正极在 5 A g -1下经过 1500 次循环后表现出 227.8 mAh g -1的可逆比容量。稳定容量247.2 mAh g -1容量保持率高达92.2%作为参考。在 10 A g -1的高电流密度下循环 2500 次,容量保持率为 77.2%,每个循环的损耗仅为 0.0091% 。这些结果都证明了N-Mn 3 O 4 /MnO杂化材料的优势。这项工作的意义在于为具有成本效益和高性能的可充电 AZIBs 提出 Zn-Mn 系统的组成和结构设计策略。此外,在这项工作中将新型水溶性粘合剂(LA133)应用于AZIBs是AZIBs实际应用的坚实一步。