当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Engineering a Kesterite-Based Photocathode for Photoelectrochemical Ammonia Synthesis from NOx Reduction
Advanced Materials ( IF 27.4 ) Pub Date : 2022-05-23 , DOI: 10.1002/adma.202201670 Shujie Zhou 1 , Kaiwen Sun 2 , Cui Ying Toe 1, 3 , Jun Yin 4 , Jialiang Huang 2 , Yiyu Zeng 2 , Doudou Zhang 5 , Weijian Chen 2 , Omar F Mohammed 3 , Xiaojing Hao 2 , Rose Amal 1
Advanced Materials ( IF 27.4 ) Pub Date : 2022-05-23 , DOI: 10.1002/adma.202201670 Shujie Zhou 1 , Kaiwen Sun 2 , Cui Ying Toe 1, 3 , Jun Yin 4 , Jialiang Huang 2 , Yiyu Zeng 2 , Doudou Zhang 5 , Weijian Chen 2 , Omar F Mohammed 3 , Xiaojing Hao 2 , Rose Amal 1
Affiliation
Ammonia is a key chemical feedstock for industry as well as future carbon-free fuel and transportable vector for renewable energy. Photoelectrochemical (PEC) ammonia synthesis from NOx reduction reaction (NOxRR) provides not only a promising alternative to the energy-intensive Haber–Bosch process through direct solar-to-ammonia conversion, but a sustainable solution for balancing the global nitrogen cycle by restoring ammonia from wastewater. In this work, selective ammonia synthesis from PEC NOxRR by a kesterite (Cu2ZnSnS4 [CZTS]) photocathode through loading defect-engineered TiOx cocatalyst on a CdS/CZTS photocathode (TiOx/CdS/CZTS) is demonstrated. The uniquely designed photocathode enables selective ammonia production from NOxRR, yielding up to 89.1% Faradaic efficiency (FE) (0.1 V vs reversible hydrogen electrode (RHE)) with a remarkable positive onset potential (0.38 V vs RHE). By tailoring the amount of surface defective Ti3+ species, the adsorption of reactant NO3− and *NO2 intermediate is significantly promoted while the full coverage of TiOx also suppresses NO2− liberation as a by-product, contributing to high ammonia selectivity. Further attempts on PEC ammonia synthesis from simulated wastewater show good FE of 64.9%, unveiling the potential of using the kesterite-based photocathode for sustainably restoring ammonia from nitrate-rich wastewater.
中文翻译:
设计用于从 NOx 还原中光电化学氨合成的基于钾辉石的光电阴极
氨是工业的关键化学原料,也是未来可再生能源的无碳燃料和可运输载体。从 NO x还原反应 (NO x RR)合成光电化学 (PEC) 氨不仅通过直接太阳能到氨的转化为能源密集型 Haber-Bosch 工艺提供了有希望的替代方案,而且是平衡全球氮循环的可持续解决方案通过从废水中恢复氨。在这项工作中,通过在CdS / CZTS光阴极( TiO x/CdS/CZTS) 进行说明。独特设计的光电阴极能够从 NO x RR 选择性生产氨,产生高达 89.1% 的法拉第效率 (FE)(0.1 V 与可逆氢电极 (RHE) 相比),具有显着的正起始电位(0.38 V 与 RHE)。通过调整表面缺陷Ti 3+物质的数量,显着促进了反应物NO 3 -和* NO 2中间体的吸附,同时TiO x 的全覆盖也抑制了NO 2 -作为副产物释放,有助于提高氨的选择性。从模拟废水中合成 PEC 氨的进一步尝试显示良好的 64.9% 的 FE,揭示了使用基于黄钾锡石的光阴极从富含硝酸盐的废水中可持续恢复氨的潜力。
更新日期:2022-05-23
中文翻译:
设计用于从 NOx 还原中光电化学氨合成的基于钾辉石的光电阴极
氨是工业的关键化学原料,也是未来可再生能源的无碳燃料和可运输载体。从 NO x还原反应 (NO x RR)合成光电化学 (PEC) 氨不仅通过直接太阳能到氨的转化为能源密集型 Haber-Bosch 工艺提供了有希望的替代方案,而且是平衡全球氮循环的可持续解决方案通过从废水中恢复氨。在这项工作中,通过在CdS / CZTS光阴极( TiO x/CdS/CZTS) 进行说明。独特设计的光电阴极能够从 NO x RR 选择性生产氨,产生高达 89.1% 的法拉第效率 (FE)(0.1 V 与可逆氢电极 (RHE) 相比),具有显着的正起始电位(0.38 V 与 RHE)。通过调整表面缺陷Ti 3+物质的数量,显着促进了反应物NO 3 -和* NO 2中间体的吸附,同时TiO x 的全覆盖也抑制了NO 2 -作为副产物释放,有助于提高氨的选择性。从模拟废水中合成 PEC 氨的进一步尝试显示良好的 64.9% 的 FE,揭示了使用基于黄钾锡石的光阴极从富含硝酸盐的废水中可持续恢复氨的潜力。