当前位置:
X-MOL 学术
›
Dalton Trans.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A novel all-nitrogen molecular crystal N16 as a promising high-energy-density material
Dalton Transactions ( IF 3.5 ) Pub Date : 2022-05-23 , DOI: 10.1039/d2dt00820c
Lei Zhao 1, 2 , Shijie Liu 3, 4 , Yuanzheng Chen 5 , Wencai Yi 6 , Darlar Khodagholian 2 , Fenglong Gu 7 , Eric Kelson 2 , Yonghao Zheng 8 , Bingbing Liu 4 , Mao-Sheng Miao 2
Dalton Transactions ( IF 3.5 ) Pub Date : 2022-05-23 , DOI: 10.1039/d2dt00820c
Lei Zhao 1, 2 , Shijie Liu 3, 4 , Yuanzheng Chen 5 , Wencai Yi 6 , Darlar Khodagholian 2 , Fenglong Gu 7 , Eric Kelson 2 , Yonghao Zheng 8 , Bingbing Liu 4 , Mao-Sheng Miao 2
Affiliation
![]() |
All-nitrogen solids, if successfully synthesized, are ideal high-energy-density materials because they store a great amount of energy and produce only harmless N2 gas upon decomposition. Currently, the only method to obtain all-nitrogen solids is to apply high pressure to N2 crystals. However, products such as cg-N tend to decompose upon releasing the pressure. Compared to covalent solids, molecular crystals are more likely to remain stable during decompression because they can relax the strain by increasing the intermolecular distances. The challenge of such a route is to find a molecular crystal that can attain a favorable phase under elevated pressure. In this work, we show, by designing a novel N16 molecule (tripentazolylamine) and examining its crystal structures under a series of pressures, that the aromatic units and high molecular symmetry are the key factors to achieving an all-nitrogen molecular crystal. Density functional calculations and structural studies reveal that this new all-nitrogen molecular crystal exhibits a particularly slow enthalpy increase with pressure due to the highly efficient crystal packing of its highly symmetric molecules. Vibration mode calculations and molecular dynamics (MD) simulations show that N16 crystals are metastable at ambient pressure and could remain inactive up to 400 K. The initial reaction steps of the decomposition are calculated by following the pathway of the concerted excision of N2 from the N5 group as revealed by the MD simulations.
中文翻译:
一种新型全氮分子晶体 N16 作为一种有前途的高能量密度材料
如果合成成功,全氮固体是理想的高能量密度材料,因为它们储存了大量的能量并且在分解时仅产生无害的N 2气体。目前,获得全氮固体的唯一方法是对N 2晶体施加高压。但是,cg-N 等产品在释放压力时往往会分解。与共价固体相比,分子晶体在减压过程中更可能保持稳定,因为它们可以通过增加分子间距离来放松应变。这种路线的挑战是找到一种可以在高压下获得有利相的分子晶体。在这项工作中,我们通过设计一种新颖的 N 16分子(三戊唑胺)并在一系列压力下检查其晶体结构,发现芳香单元和高分子对称性是实现全氮分子晶体的关键因素。密度泛函计算和结构研究表明,由于其高度对称的分子的高效晶体堆积,这种新的全氮分子晶体表现出特别缓慢的焓随压力增加。振动模式计算和分子动力学 (MD) 模拟表明,N 16晶体在环境压力下是亚稳态的,并且可以在高达 400 K 的温度下保持非活性。分解的初始反应步骤是通过遵循 N 2的协同切除路径来计算的。 N 5MD模拟显示的组。
更新日期:2022-05-23
中文翻译:

一种新型全氮分子晶体 N16 作为一种有前途的高能量密度材料
如果合成成功,全氮固体是理想的高能量密度材料,因为它们储存了大量的能量并且在分解时仅产生无害的N 2气体。目前,获得全氮固体的唯一方法是对N 2晶体施加高压。但是,cg-N 等产品在释放压力时往往会分解。与共价固体相比,分子晶体在减压过程中更可能保持稳定,因为它们可以通过增加分子间距离来放松应变。这种路线的挑战是找到一种可以在高压下获得有利相的分子晶体。在这项工作中,我们通过设计一种新颖的 N 16分子(三戊唑胺)并在一系列压力下检查其晶体结构,发现芳香单元和高分子对称性是实现全氮分子晶体的关键因素。密度泛函计算和结构研究表明,由于其高度对称的分子的高效晶体堆积,这种新的全氮分子晶体表现出特别缓慢的焓随压力增加。振动模式计算和分子动力学 (MD) 模拟表明,N 16晶体在环境压力下是亚稳态的,并且可以在高达 400 K 的温度下保持非活性。分解的初始反应步骤是通过遵循 N 2的协同切除路径来计算的。 N 5MD模拟显示的组。