行人航位推算(PDR)是行人导航的有效技术。在 PDR 中,使用独立传感器(例如加速度计)的测量来检测步数,并使用额外的航向角更新位置。智能手机通常配备低成本的微机电系统加速度计,可用于实现行人导航的 PDR。由于 PDR 位置误差随步行距离而发散,因此全球导航卫星系统 (GNSS) 通常与 PDR 集成以获得更可靠的定位结果。本文通过卡尔曼滤波器和因子图优化 (FGO) 实现了智能手机 PDR/GNSS。在 FGO 中,PDR 因子被建模,状态与航位推算算法相关。GNSS 位置被建模为“GNSS”因子以限制每一步的状态。通过表示状态和测量的图形模型,将状态估计转换为非线性最小二乘问题,我们利用乔治亚理工学院平滑和映射图优化库来实现优化。我们在华为 Mate 40 Pro 手机上进行了标准操场现场测试,现场测试结果表明 FGO 有效提高了智能手机的定位精度。我们已经发布了源代码,希望它们能够启发行人导航的其他工作,即在智能手机上使用 FGO 构建自适应多传感器集成系统。状态估计被转换为非线性最小二乘问题,我们利用乔治亚理工学院平滑和映射图优化库来实现优化。我们在华为 Mate 40 Pro 手机上进行了标准操场现场测试,现场测试结果表明 FGO 有效提高了智能手机的定位精度。我们已经发布了源代码,希望它们能够启发行人导航的其他工作,即在智能手机上使用 FGO 构建自适应多传感器集成系统。状态估计被转换为非线性最小二乘问题,我们利用乔治亚理工学院平滑和映射图优化库来实现优化。我们在华为 Mate 40 Pro 手机上进行了标准操场现场测试,现场测试结果表明 FGO 有效提高了智能手机的定位精度。我们已经发布了源代码,希望它们能够启发行人导航的其他工作,即在智能手机上使用 FGO 构建自适应多传感器集成系统。现场测试结果表明,FGO有效提高了智能手机的定位精度。我们已经发布了源代码,希望它们能够启发行人导航的其他工作,即在智能手机上使用 FGO 构建自适应多传感器集成系统。现场测试结果表明,FGO有效提高了智能手机的定位精度。我们已经发布了源代码,希望它们能够启发行人导航的其他工作,即在智能手机上使用 FGO 构建自适应多传感器集成系统。
"点击查看英文标题和摘要"
Implementation and performance analysis of the PDR/GNSS integration on a smartphone
Pedestrian dead reckoning (PDR) is an effective technology for pedestrian navigation. In PDR, the steps are detected with the measurements of self-contained sensors, such as accelerometers, and the position is updated with additional heading angles. A smartphone is usually equipped with a low-cost microelectromechanical system accelerometer, which can be utilized to implement PDR for pedestrian navigation. Since the PDR position errors diverge with the walking distance, the global navigation satellite system (GNSS) is usually integrated with PDR for more reliable position results. This paper implemented a smartphone PDR/GNSS via a Kalman filter and factor graph optimization (FGO). In the FGO, the PDR factor is modeled, and the states are correlated with a dead reckoning algorithm. The GNSS position is modeled as the “GNSS” factor to constrain the states at each step. With a graphic model representing the states and measurements, the state estimation is converted to a nonlinear least square problem, and we utilize the Georgia Tech Smoothing and Mapping graph optimization library to implement the optimization. We tested the proposed method on a Huawei Mate 40 Pro handset with a standard playground field test, and the field test results showed that the FGO effectively improved the smartphone position accuracy. We have released the source codes and hope that they will inspire other works on pedestrian navigation, i.e., constructing an adaptive multi-sensor integration system using FGO on a smartphone.