当前位置: X-MOL 学术Adv. Opt. Photon. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
At the intersection of optics and deep learning: statistical inference, computing, and inverse design
Advances in Optics and Photonics ( IF 25.2 ) Pub Date : 2022-05-19 , DOI: 10.1364/aop.450345
Deniz Mengu 1, 2 , Md Sadman Sakib Rahman 1, 2 , Yi Luo 1, 2 , Jingxi Li 1, 2 , Onur Kulce 1, 2 , Aydogan Ozcan 1, 2
Affiliation  

Deep learning has been revolutionizing information processing in many fields of science and engineering owing to the massively growing amounts of data and the advances in deep neural network architectures. As these neural networks are expanding their capabilities toward achieving state-of-the-art solutions for demanding statistical inference tasks in various applications, there appears to be a global need for low-power, scalable, and fast computing hardware beyond what existing electronic systems can offer. Optical computing might potentially address some of these needs with its inherent parallelism, power efficiency, and high speed. Recent advances in optical materials, fabrication, and optimization techniques have significantly enriched the design capabilities in optics and photonics, leading to various successful demonstrations of guided-wave and free-space computing hardware for accelerating machine learning tasks using light. In addition to statistical inference and computing, deep learning has also fundamentally affected the field of inverse optical/photonic design. The approximation power of deep neural networks has been utilized to develop optics/photonics systems with unique capabilities, all the way from nanoantenna design to end-to-end optimization of computational imaging and sensing systems. In this review, we attempt to provide a broad overview of the current state of this emerging symbiotic relationship between deep learning and optics/photonics.

中文翻译:

在光学和深度学习的交叉点:统计推断、计算和逆向设计

由于数据量的大量增长和深度神经网络架构的进步,深度学习已经彻底改变了许多科学和工程领域的信息处理。随着这些神经网络正在扩展其能力,以实现各种应用中要求苛刻的统计推理任务的最先进的解决方案,全球似乎需要超越现有电子系统的低功耗、可扩展和快速计算硬件可以提供。光学计算可能以其固有的并行性、功率效率和高速解决其中的一些需求。光学材料、制造和优化技术的最新进展显着丰富了光学和光子学的设计能力,导致各种成功的导波和自由空间计算硬件演示,用于使用光加速机器学习任务。除了统计推断和计算,深度学习还从根本上影响了逆光学/光子设计领域。深度神经网络的逼近能力已被用于开发具有独特功能的光学/光子系统,从纳米天线设计到计算成像和传感系统的端到端优化。在这篇综述中,我们试图对深度学习和光学/光子学之间这种新兴的共生关系的现状进行广泛的概述。深度学习也从根本上影响了逆光学/光子设计领域。深度神经网络的逼近能力已被用于开发具有独特功能的光学/光子系统,从纳米天线设计到计算成像和传感系统的端到端优化。在这篇综述中,我们试图对深度学习和光学/光子学之间这种新兴的共生关系的现状进行广泛的概述。深度学习也从根本上影响了逆光学/光子设计领域。深度神经网络的逼近能力已被用于开发具有独特功能的光学/光子系统,从纳米天线设计到计算成像和传感系统的端到端优化。在这篇综述中,我们试图对深度学习和光学/光子学之间这种新兴的共生关系的现状进行广泛的概述。
更新日期:2022-05-19
down
wechat
bug