当前位置: X-MOL 学术Appl. Catal. B Environ. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High H2O2 selectivity and enhanced Fe2+ regeneration toward an effective electro-Fenton process based on a self-doped porous biochar cathode
Applied Catalysis B: Environment and Energy ( IF 20.2 ) Pub Date : 2022-05-18 , DOI: 10.1016/j.apcatb.2022.121523
Zhipeng Luo , Mingtao Liu , Diyong Tang , Yao Xu , Honghua Ran , Jing He , Ke Chen , Jie Sun

Cathode materials with high catalytic activity for H2O2 production and Fe2+ regeneration are essential to an efficient electro-Fenton process. Herein, we demonstrate a facile self-sacrificial template route to synthesize heteroatom-doped porous biochar. Owing to the created hierarchical porous structure and active defects, more generated oxygen functional groups (COOH/C–O–C) and modulated nitrogen dopants, the biochar cathode exhibits enhanced electrocatalytic activity. It achieves a high H2O2 selectivity (92%), facilitated Fe2+ regeneration, and an efficient H2O2 activation rate (82%). Various organic contaminants, including endocrine-disrupting chemicals, phenols, and antibiotics, can be effectively degraded with removal efficiencies of 98–100% within 15 min. The mineralization efficiencies achieve 83–100% with energy consumption of 0.87–1.07 kWh m−3. Moreover, the electro-Fenton system exhibits good stability and versatile applicability for organic pollutants remediation in different surface water matrices. This study offers valuable insights into the preparation of cost-effective cathode materials for an efficient electro-Fenton process.



中文翻译:

基于自掺杂多孔生物炭阴极的高效电芬顿工艺具有高 H2O2 选择性和增强的 Fe2+ 再生能力

用于 H 2 O 2生产和 Fe 2+再生的具有高催化活性的阴极材料对于高效的电芬顿工艺至关重要。在此,我们展示了一种简便的自牺牲模板途径来合成杂原子掺杂的多孔生物炭。由于产生的分层多孔结构和活性缺陷、更多的氧官能团(COOH/C-O-C)和调节的氮掺杂剂,生物炭正极表现出增强的电催化活性。它实现了高 H 2 O 2选择性 (92%)、促进 Fe 2+再生和高效的 H 2 O 2激活率 (82%)。各种有机污染物,包括干扰内分泌的化学物质、酚类和抗生素,可以在 15 分钟内有效降解,去除效率为 98-100%。矿化效率达到 83-100%,能耗为 0.87-1.07 kWh m -3。此外,电芬顿系统在不同地表水基质中表现出良好的稳定性和多种有机污染物修复的适用性。这项研究为高效电芬顿工艺制备具有成本效益的阴极材料提供了宝贵的见解。

更新日期:2022-05-18
down
wechat
bug