当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Significantly enhanced thermoelectric performance of Van der Waals interface coupling molecular junction with nitrogen-doped graphene nanoribbon electrodes
Applied Surface Science ( IF 6.3 ) Pub Date : 2022-05-17 , DOI: 10.1016/j.apsusc.2022.153722
Bei Zhang

Rational design of model structure and effective strategy to overcome inherent mismatch between molecular orbital energy and Fermi level (FL) of electrodes are the key prerequisites to fully rationalize and optimize thermoelectric properties for a single molecular junction. A bis-phenylethynyl-anthrancene (BIS-molecule) with conjugated structure is contacted with armchair/zigzag graphene nanoribbon (AGNR/ZGNR) electrodes by van der Waals (vdW) interface coupling. The optimized distance between molecular and two leads is associated with interface stacking mode. Weak-coupling structure greatly suppresses phonon transport behavior due to interface resistance. Thermal conductance (κtol) has been greatly increased at FL with N-doping based on two different mechanisms. Mass matching effect plays a dominate role for κtol increase in N-doped AGNR_BIS_AGNR, meanwhile sharp and degenerated DOS is main contribution to κtol in N-doped ZGNR_BIS_ZGNR. Nitrogen-doping can adjust Fermi level of electrodes into molecular resonance region, resulting in the enhancement of electronic coupling between central molecular and leads, which is come from obvious charge transfer from graphene nanoribbon to BIS-molecule. Moreover, an excellent thermoelectric figure-of-merit (ZT) of 14.1/3.5 has been obtained near FL for nitrogen-doped molecular junction.



中文翻译:

范德华界面耦合分子结与氮掺杂石墨烯纳米带电极的热电性能显着增强

模型结构的合理设计和克服电极分子轨道能量与费米能级(FL)固有失配的有效策略是充分合理化和优化单个分子结的热电性能的关键前提。具有共轭结构的双苯基乙炔基蒽(BIS-分子)通过范德华(vdW)界面耦合与扶手椅/锯齿形石墨烯纳米带(AGNR / ZGNR)电极接触。分子和两个引线之间的优化距离与界面堆叠模式有关。由于界面电阻,弱耦合结构极大地抑制了声子传输行为。热导 ( κ tol) 在 FL 中基于两种不同的机制使用 N 掺杂大大增加。质量匹配效应对 N 掺杂 AGNR_BIS_AGNR 中的κ tol增加起主导作用,同时急剧和退化的 DOS 是 N 掺杂 ZGNR_BIS_ZGNR 中κ tol的主要贡献。氮掺杂可以将电极的费米能级调整到分子共振区,从而增强中心分子与引线之间的电子耦合,这是由于石墨烯纳米带向BIS分子的明显电荷转移。此外,对于氮掺杂分子结,在 FL 附近获得了 14.1/3.5的优异热电品质因数 ( ZT )。

更新日期:2022-05-21
down
wechat
bug