当前位置:
X-MOL 学术
›
Adv. Nonlinear Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Lipschitz estimates for partial trace operators with extremal Hessian eigenvalues
Advances in Nonlinear Analysis ( IF 3.2 ) Pub Date : 2022-03-09 , DOI: 10.1515/anona-2022-0241 Antonio Vitolo 1, 2
Advances in Nonlinear Analysis ( IF 3.2 ) Pub Date : 2022-03-09 , DOI: 10.1515/anona-2022-0241 Antonio Vitolo 1, 2
Affiliation
We consider the Dirichlet problem for partial trace operators which include the smallest and the largest eigenvalue of the Hessian matrix. It is related to two-player zero-sum differential games. No Lipschitz regularity result is known for the solutions, to our knowledge. If some eigenvalue is missing, such operators are nonlinear, degenerate, non-uniformly elliptic, neither convex nor concave. Here we prove an interior Lipschitz estimate under a non-standard assumption: that the solution exists in a larger, unbounded domain, and vanishes at infinity. In other words, we need a condition coming from far away. We also provide existence results showing that this condition is satisfied for a large class of solutions. On the occasion, we also extend a few qualitative properties of solutions, known for uniformly elliptic operators, to partial trace operators.
中文翻译:
具有极值 Hessian 特征值的部分迹算子的 Lipschitz 估计
我们考虑包含 Hessian 矩阵的最小和最大特征值的部分迹算子的 Dirichlet 问题。它与两人零和差分游戏有关。据我们所知,没有已知的 Lipschitz 正则性结果的解决方案。如果缺少某些特征值,则此类算子是非线性的、退化的、非均匀椭圆的,既不凸也不凹。在这里,我们在非标准假设下证明了内部 Lipschitz 估计:解存在于更大的无界域中,并且在无穷远处消失。换句话说,我们需要一个来自远方的条件。我们还提供了存在结果,表明该条件对于一大类解决方案都满足。有时,我们还扩展了解决方案的一些定性属性,这些属性以一致椭圆算子而闻名,
更新日期:2022-03-09
中文翻译:
具有极值 Hessian 特征值的部分迹算子的 Lipschitz 估计
我们考虑包含 Hessian 矩阵的最小和最大特征值的部分迹算子的 Dirichlet 问题。它与两人零和差分游戏有关。据我们所知,没有已知的 Lipschitz 正则性结果的解决方案。如果缺少某些特征值,则此类算子是非线性的、退化的、非均匀椭圆的,既不凸也不凹。在这里,我们在非标准假设下证明了内部 Lipschitz 估计:解存在于更大的无界域中,并且在无穷远处消失。换句话说,我们需要一个来自远方的条件。我们还提供了存在结果,表明该条件对于一大类解决方案都满足。有时,我们还扩展了解决方案的一些定性属性,这些属性以一致椭圆算子而闻名,