当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Highly Efficient (>9%) Lead-Free AgBiS2 Colloidal Nanocrystal/Organic Hybrid Solar Cells
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2022-05-06 , DOI: 10.1002/aenm.202200262 Changjo Kim 1 , Irem Kozakci 1 , Junho Kim 1 , Sang Yeon Lee 2 , Jung‐Yong Lee 1
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2022-05-06 , DOI: 10.1002/aenm.202200262 Changjo Kim 1 , Irem Kozakci 1 , Junho Kim 1 , Sang Yeon Lee 2 , Jung‐Yong Lee 1
Affiliation
Environmentally friendly colloidal nanocrystals (NCs) are promising materials for next-generation solar cells because of their low cost, solution processability, and facile bandgap tunability. Recently, silver bismuth disulfide (AgBiS2) has attracted considerable attention owing to its appreciable power conversion efficiency (PCE) of 6.4%. However, issues such as the low open-circuit voltage (VOC) compared to the bandgap of the AgBiS2 NCs and the unoptimized energy level structure at the AgBiS2 NC/PTB7 hole-transporting layer (HTL) interface should be resolved to enhance the performance of solar cells. In this study, a design strategy to obtain efficient energy level structure in AgBiS2 NC/organic hybrid solar cells is proposed. By selecting PBDB-T-2F as an HTL with a lower highest occupied molecular orbital level than that of PTB7, the VOC of the device is increased. Furthermore, iodide- and thiolate-passivated AgBiS2 NC surfaces are generated using tetramethylammonium iodide (TMAI) and 2-mercaptoethanol (2-ME), which leads to the energy level optimization of NCs for efficient charge extraction. This improves the PCE from 3.3% to 7.1%. In addition, the polymer is replaced with a PBDB-T-2F:BTP-4Cl blend to achieve a higher short-circuit current density through complementary absorption. Accordingly, an AgBiS2 NC-based solar cell with a PCE of 9.1% is fabricated.
中文翻译:
高效 (>9%) 无铅 AgBiS2 胶体纳米晶体/有机混合太阳能电池
环保胶体纳米晶体 (NCs) 因其成本低、溶液可加工性和易带隙可调性而成为下一代太阳能电池的有前途的材料。最近,二硫化银铋(AgBiS 2)由于其6.4%的可观的功率转换效率(PCE)而引起了相当大的关注。然而,与 AgBiS 2 NCs的带隙相比开路电压 ( V OC ) 低以及 AgBiS 2 NC/PTB7 空穴传输层 (HTL) 界面处未优化的能级结构等问题应得到解决,以增强太阳能电池的性能。在这项研究中,一种在 AgBiS 2中获得有效能级结构的设计策略提出了NC/有机混合太阳能电池。通过选择 PBDB-T-2F 作为最高占据分子轨道能级低于 PTB7 的 HTL,器件的V OC增加。此外,使用四甲基碘化铵 (TMAI) 和 2-巯基乙醇 (2-ME) 生成碘化物和硫醇盐钝化的 AgBiS 2 NC 表面,从而优化 NC 的能级以实现高效的电荷提取。这将 PCE 从 3.3% 提高到 7.1%。此外,聚合物被替换为 PBDB-T-2F:BTP-4Cl 共混物,通过互补吸收实现更高的短路电流密度。因此,制造了PCE为9.1%的AgBiS 2 NC基太阳能电池。
更新日期:2022-05-06
中文翻译:
高效 (>9%) 无铅 AgBiS2 胶体纳米晶体/有机混合太阳能电池
环保胶体纳米晶体 (NCs) 因其成本低、溶液可加工性和易带隙可调性而成为下一代太阳能电池的有前途的材料。最近,二硫化银铋(AgBiS 2)由于其6.4%的可观的功率转换效率(PCE)而引起了相当大的关注。然而,与 AgBiS 2 NCs的带隙相比开路电压 ( V OC ) 低以及 AgBiS 2 NC/PTB7 空穴传输层 (HTL) 界面处未优化的能级结构等问题应得到解决,以增强太阳能电池的性能。在这项研究中,一种在 AgBiS 2中获得有效能级结构的设计策略提出了NC/有机混合太阳能电池。通过选择 PBDB-T-2F 作为最高占据分子轨道能级低于 PTB7 的 HTL,器件的V OC增加。此外,使用四甲基碘化铵 (TMAI) 和 2-巯基乙醇 (2-ME) 生成碘化物和硫醇盐钝化的 AgBiS 2 NC 表面,从而优化 NC 的能级以实现高效的电荷提取。这将 PCE 从 3.3% 提高到 7.1%。此外,聚合物被替换为 PBDB-T-2F:BTP-4Cl 共混物,通过互补吸收实现更高的短路电流密度。因此,制造了PCE为9.1%的AgBiS 2 NC基太阳能电池。