Advanced Powder Technology ( IF 4.2 ) Pub Date : 2022-05-04 , DOI: 10.1016/j.apt.2022.103596 Emmanuel O. Ichipi 1 , Shepherd M. Tichapondwa 2 , Evans M.N. Chirwa 1
Ag/Ag2S-ZnO nanocomposites were prepared via a simple hydrothermal process followed by a plasmonic Ag+ reduction through a photo-deposition method. Ag2S was introduced to narrow the overall composite bandgap and activate the surface plasmon resonance (SPR) effect of the Ag+ cation present. The physicochemical properties of the as-synthesised catalysts were characterised by X-ray diffraction (XRD), scanning and transmission electron microscopies (SEM and TEM), Brunauer-Emmett-Teller (BET) analysis. Fourier-transform infrared spectroscopy (FTIR), Ultraviolet diffuse reflectance spectroscopy (UV–vis DRS), photoluminescence emission spectra (PL) and X-ray photoelectron spectroscopy (XPS) was conducted to investigate the photo-absorption and emission spectra of the nanocomposites. The degradation efficiency of all the synthesised catalysts (ZnO, Ag2S, Ag/ZnO and Ag2S/ZnO) prior to the final product, Ag/Ag2S/ZnO was tested and compared. Results showed that the ternary Ag/Ag2S/ZnO achieved a 98 % phenol removal compared to 50 %, 11 %, 64 % and 93 % for ZnO, Ag2S, Ag/ZnO and binary Ag2S/ZnO, respectively. The degradation kinetics followed the Langmuir-Hinshelwood model, which typically describes heterogeneous photocatalytic surface reactions. The linear fits had R2 values higher than 0.97, which confirms the degree of accuracy or statistical fitness to the kinetic model. Degradation scavenger test confirmed the holes (h+) as the main inhibitor and identified the superoxide O2•¯ radical as the main active specie responsible for the degradation. Total organic carbon analysis using the ternary Ag/Ag2S-ZnO catalyst only achieved a 74% phenol mineralization after 24 h of photocatalysis. Recyclability tests showed good phenol removal stability of Ag/Ag2S-ZnO at 41 % after five recycle runs. Hence, a synergistic degradation mechanism responsible for the efficient photo-degradation performance was proposed.
中文翻译:
掺杂在 ZnO 纳米复合材料上的 Ag/Ag2S 的等离子体效应和带隙调整用于增强可见光光催化
Ag/Ag 2 S-ZnO 纳米复合材料通过简单的水热工艺制备,然后通过光沉积法进行等离子体 Ag +还原。引入Ag 2 S 以缩小整体复合带隙并激活 Ag +的表面等离子共振 (SPR) 效应存在的阳离子。所合成的催化剂的物理化学性质通过 X 射线衍射 (XRD)、扫描和透射电子显微镜 (SEM 和 TEM)、Brunauer-Emmett-Teller (BET) 分析来表征。傅里叶变换红外光谱 (FTIR)、紫外漫反射光谱 (UV-vis DRS)、光致发光发射光谱 (PL) 和 X 射线光电子能谱 (XPS) 用于研究纳米复合材料的光吸收和发射光谱。所有合成催化剂(ZnO、Ag 2 S、Ag/ZnO 和 Ag 2 S/ZnO)在最终产品 Ag/Ag 2之前的降解效率对 S/ZnO 进行了测试和比较。结果表明,三元 Ag/Ag2S/ZnO 的苯酚去除率分别为 98%,而 ZnO、Ag2S、Ag/ZnO 和二元 Ag2S/ZnO 的苯酚去除率分别为 50%、11%、64% 和 93%。降解动力学遵循 Langmuir-Hinshelwood 模型,该模型通常描述非均相光催化表面反应。线性拟合的 R 2值高于 0.97,这证实了动力学模型的准确度或统计拟合度。降解清除剂试验证实空穴(h + ) 是主要的抑制剂,并确定超氧化物O 2 •¯ 自由基是降解的主要活性物质。使用三元 Ag/Ag 2进行总有机碳分析S-ZnO 催化剂在光催化 24 小时后仅实现了 74% 的苯酚矿化。可循环性测试表明,经过五次循环运行后,Ag/Ag 2 S-ZnO 在 41% 时具有良好的苯酚去除稳定性。因此,提出了一种负责高效光降解性能的协同降解机制。