Water Research ( IF 11.4 ) Pub Date : 2022-05-04 , DOI: 10.1016/j.watres.2022.118547 Shaoyang Hu 1 , Han Yeong Kaw 1 , Lizhong Zhu 1 , Wei Wang 1
Halogenated aromatic disinfection byproducts (DBPs) exhibited similar total organic halogen levels in chlorinated drinking water samples as compared with aliphatic ones, and they predominantly accounted for the overall toxicity of the samples. Among the reported halogenated aromatic DBPs, halonitrophenols (HNPs) have received particular attention in recent years due to the relatively high risk in drinking water. In this study, a new group of halogenated aromatic DBPs were detected and then proposed to be halohydroxybenzonitriles (HHBNs) by employing the ultra-performance liquid chromatography/tandem mass spectrometers. Thereafter, the specific HHBN species in drinking water were theoretically speculated and then thoroughly identified with standard compounds. Their occurrence in drinking water was investigated, their cytotoxicity was evaluated, and their stability in the presence of chlorine was assessed. Seven newly identified HHBNs, including 3,5-dichloro-4-hydroxybenzonitrile, 3,5-dichloro-2-hydroxybenzonitrile, 5-bromo-3-chloro-4-hydroxybenzonitrile, 5-bromo-3-chloro-2-hydroxybenzonitrile, 3,5-dibromo-4-hydroxybenzonitrile, 3,5-dibromo-2-hydroxybenzonitrile, and 3,5-diiodo-4-hydroxybenzonitrile, showed 100% detection frequency in the collected drinking water samples with concentrations up to 36 ng/L. HHBNs exhibited significantly higher cytotoxicity in Chinese hamster ovary cells than regulated DBPs (e.g., trihalomethanes and haloacetic acids), which might be contributed by their cellular uptake efficiency and nucleophilicity. The seven HHBNs were proved to undergo transformation during chlorination following pseudo-first-order decay with half-lives in the range of 9–63 h. More importantly, in comparison to HNPs, which showed relatively high toxicity and strong stability among the halogenated aromatic DBPs, HHBNs presented comparable concentration-cytotoxicity contribution (50%) and slightly weaker stability (43%), suggesting that HHBNs should be a new group of DBPs of concern in drinking water.