当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Highly Selective Oxidative Dehydrogenation of Ethane to Ethylene via Chemical Looping with Oxygen Uncoupling through Structural Engineering of the Oxygen Carrier
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2022-04-28 , DOI: 10.1002/aenm.202200405
Giancarlo Luongo 1 , Felix Donat 1 , Alexander H. Bork 1 , Elena Willinger 1 , Annelies Landuyt 1 , Christoph R. Müller 1
Affiliation  

The oxidative dehydrogenation of ethane (ODH) to produce ethylene offers advantages compared to the industry standard steam cracking, but its industrial application is hindered by costly air separation units needed to supply oxygen. A chemical-looping-based oxidative dehydrogenation (CL-ODH) scheme is presented, in which oxygen carriers supply gaseous oxygen in situ, which then reacts with ethane in the presence of a catalyst at a comparatively low temperature (500 °C). A common challenge of chemical looping processes beyond combustion is to suppress the overoxidation of hydrocarbons to COx to enable high product yields. It is demonstrated that the overoxidation of ethane can be eliminated completely through structural engineering of the perovskite oxygen carrier involving alkali-metal-based carbonate coatings, while maintaining the materials’ ability to generate oxygen. Through CL-ODH, higher ethylene selectivity (≈91%) and yields (≈39%) are achieved compared to the conventional ODH scheme without oxygen carrier and cofeeding air/ethane. 18O-labeling experiments demonstrate that the carbonate layer functions like a diffusion barrier for ethane while being permeable for oxygen. Both the CL-ODH scheme and the material design strategy can be extended to other catalytic oxidation or dehydrogenation reactions requiring oxygen at different temperatures, offering enormous potential to intensify such processes.

中文翻译:

通过氧载体结构工程的氧解偶联化学链高选择性氧化脱氢制乙烯

与工业标准蒸汽裂解相比,乙烷氧化脱氢 (ODH) 生产乙烯具有优势,但其工业应用受到供应氧气所需的昂贵空气分离装置的阻碍。提出了一种基于化学循环的氧化脱氢(CL-ODH)方案,其中氧载体原位提供气态氧,然后在催化剂存在下在相对较低的温度(500°C)下与乙烷反应。燃烧以外的化学循环过程的一个共同挑战是抑制碳氢化合物过度氧化为 CO x以实现高产品产量。研究表明,通过涉及碱金属基碳酸盐涂层的钙钛矿氧载体的结构工程,可以完全消除乙烷的过氧化,同时保持材料产生氧气的能力。通过 CL-ODH,与没有氧载体和共同进料空气/乙烷的传统 ODH 方案相比,实现了更高的乙烯选择性 (≈91%) 和产率 (≈39%)。18O-标记实验表明,碳酸盐层的作用类似于乙烷的扩散屏障,同时对氧气是可渗透的。CL-ODH 方案和材料设计策略都可以扩展到在不同温度下需要氧气的其他催化氧化或脱氢反应,为强化这些过程提供了巨大的潜力。
更新日期:2022-04-28
down
wechat
bug