当前位置:
X-MOL 学术
›
Appl. Surf. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Micro-tailored g-C3N4 enables Ru single-atom loading for efficient photocatalytic H2 evolution
Applied Surface Science ( IF 6.3 ) Pub Date : 2022-04-29 , DOI: 10.1016/j.apsusc.2022.153471
Chengjie Li 1, 2 , Xiqing Dong 1 , Yingchao Zhang 1 , Jing Hu 1 , Jinxiu Yuan 1 , Guofu Li 1 , Di Chen 1 , Yuning Li 3
Applied Surface Science ( IF 6.3 ) Pub Date : 2022-04-29 , DOI: 10.1016/j.apsusc.2022.153471
Chengjie Li 1, 2 , Xiqing Dong 1 , Yingchao Zhang 1 , Jing Hu 1 , Jinxiu Yuan 1 , Guofu Li 1 , Di Chen 1 , Yuning Li 3
Affiliation
![]() |
Loading single atom (SA) cocatalysts onto semiconductors offers great potential for improving the photocatalytic performance. Here, we report a simple micro-tailoring strategy that cuts g-C3 N4 into small pieces and oligomers. Defects, boundaries, dopants and terminal groups created could confine Ru SAs stably onto the framework, ensuring uniform dispersion of Ru SAs on the tailored g-C3 N4 . The as-prepared composite, the tailored g-C3 N4 loaded with Ru SAs, showed a dramatic increase photocatalytic activity for H2 evolution (4052.1 μmol h−1 g−1 ) compared to the composite of the non-tailored g-C3 N4 loaded with Ru (394.3 μmol h−1 g−1 ). The enhanced catalytic activity was achieved by the metal-support interaction between the Ru atoms and the tailored g-C3 N4 , which could manipulate local charge distribution, thus promoting the adsorption of intermediates and enabling efficient charge transfer. In addition, atomic Ru-sites could provide directional charge transfer channels and targeting sites to facilitate rapid photo-introduced charge transfer and water reduction reaction. The proposed strategy provides a facile and feasible way for the construction of atomically dispersed catalysts for efficient photocatalytic H2 evolution and other reactions.
中文翻译:
微定制 g-C3N4 可实现 Ru 单原子负载,实现高效的光催化 H2 析出
将单原子 (SA) 助催化剂负载到半导体上为提高光催化性能提供了巨大的潜力。在这里,我们报道了一种简单的微定制策略,该策略将 g-C3N4 切割成小块和低聚物。产生的缺陷、边界、掺杂剂和末端基团可以将 Ru SAs 稳定地限制在框架上,确保 Ru SAs 在定制的 g-C3N4 上均匀分散。与负载 Ru 的非定制 g-C3N4 的复合材料 (394.3 μmol h-1 g-1) 相比,所制备的复合材料,即负载 Ru SA 的定制 g-C3N4 显示出显着增加的 H2 析出光催化活性 (4052.1 μmol h-1 g-1)。增强的催化活性是通过 Ru 原子和定制的 g-C3N4 之间的金属载体相互作用实现的,它可以操纵局部电荷分布,从而促进中间体的吸附并实现高效的电荷转移。此外,原子 Ru 位点可以提供定向电荷转移通道和靶向位点,以促进快速光引入电荷转移和水还原反应。所提出的策略为构建原子分散催化剂提供了一种简单可行的途径,用于高效的光催化 H2 析出和其他反应。
更新日期:2022-04-29
中文翻译:

微定制 g-C3N4 可实现 Ru 单原子负载,实现高效的光催化 H2 析出
将单原子 (SA) 助催化剂负载到半导体上为提高光催化性能提供了巨大的潜力。在这里,我们报道了一种简单的微定制策略,该策略将 g-C3N4 切割成小块和低聚物。产生的缺陷、边界、掺杂剂和末端基团可以将 Ru SAs 稳定地限制在框架上,确保 Ru SAs 在定制的 g-C3N4 上均匀分散。与负载 Ru 的非定制 g-C3N4 的复合材料 (394.3 μmol h-1 g-1) 相比,所制备的复合材料,即负载 Ru SA 的定制 g-C3N4 显示出显着增加的 H2 析出光催化活性 (4052.1 μmol h-1 g-1)。增强的催化活性是通过 Ru 原子和定制的 g-C3N4 之间的金属载体相互作用实现的,它可以操纵局部电荷分布,从而促进中间体的吸附并实现高效的电荷转移。此外,原子 Ru 位点可以提供定向电荷转移通道和靶向位点,以促进快速光引入电荷转移和水还原反应。所提出的策略为构建原子分散催化剂提供了一种简单可行的途径,用于高效的光催化 H2 析出和其他反应。