量化交易在追求系统化和算法化的投资方法方面越来越受欢迎,这引起了交易员和投资公司的极大关注。因此,评估潜在风险因素和回报的有效计算方法对于算法交易策略的开发至关重要。在传统的金融和金融工程研究中,统计方法已广泛应用于定量分析。与此同时,全球投资者对量化对冲基金的需求激增。在当前的研究中,多期投资组合选择问题是根据现实交易成本模型来考虑的,这是量化对冲基金经理的主要关注点。我们开发了一个专用的基于多智能体的深度强化学习框架,具有两级嵌套代理结构,以确定具有不同目标的有效投资组合管理方法。此外,我们提出了专门设计的投资绩效评估奖励功能和交易决策的新颖政策网络结构。为了有效地识别投资组合中的特定资产属性,每个代理都配备了精细的深度策略网络和特殊的训练方法,使所提出的强化学习代理能够学习风险转移行为。结果揭示了我们提出的框架的有效性,该框架优于几个已建立或具有代表性的投资组合选择策略。此外,我们提出了专门设计的投资绩效评估奖励功能和交易决策的新颖政策网络结构。为了有效地识别投资组合中的特定资产属性,每个代理都配备了精细的深度策略网络和特殊的训练方法,使所提出的强化学习代理能够学习风险转移行为。结果揭示了我们提出的框架的有效性,该框架优于几个已建立或具有代表性的投资组合选择策略。此外,我们提出了专门设计的投资绩效评估奖励功能和交易决策的新颖政策网络结构。为了有效地识别投资组合中的特定资产属性,每个代理都配备了精细的深度策略网络和特殊的训练方法,使所提出的强化学习代理能够学习风险转移行为。结果揭示了我们提出的框架的有效性,该框架优于几个已建立或具有代表性的投资组合选择策略。每个代理都配备了精细的深度策略网络和特殊的训练方法,使所提出的强化学习代理能够学习风险转移行为。结果揭示了我们提出的框架的有效性,该框架优于几个已建立或具有代表性的投资组合选择策略。每个代理都配备了精细的深度策略网络和特殊的训练方法,使所提出的强化学习代理能够学习风险转移行为。结果揭示了我们提出的框架的有效性,该框架优于几个已建立或具有代表性的投资组合选择策略。
"点击查看英文标题和摘要"
Multiagent-based deep reinforcement learning for risk-shifting portfolio management
The growing popularity of quantitative trading in pursuit of a systematic and algorithmic approach to investment has drawn considerable attention among traders and investment firms. Consequently, an effective computational method for evaluating potential risk factors and returns is crucial for the development of algorithmic trading strategies. In traditional finance and financial engineering research, statistical approaches have been widely applied to quantitative analysis. Meanwhile, investor demand for quantitative hedge funds has surged worldwide. In the current study, the multiperiod portfolio selection problem was considered in terms of the realistic transaction cost model, which is a major concern for quantitative hedge fund managers. We developed a dedicated multiagent-based deep reinforcement learning framework with a two-level nested agent structure to determine effective portfolio management methods with different objectives. In addition, we proposed a specially-designed reward function for investment performance evaluation and a novel policy network structure for trading decision-making. To efficiently identify specific asset attributes in a portfolio, each agent is equipped with a refined deep policy network and a special training method that enables the proposed reinforcement learning agent to learn risk transfer behaviors. The results revealed the effectiveness of our proposed framework, which outperformed several established or representative portfolio selection strategies.