当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Partial Sulfidation Strategy to NiFe-LDH@FeNi2S4 Heterostructure Enable High-Performance Water/Seawater Oxidation
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2022-04-27 , DOI: 10.1002/adfm.202200951 Lei Tan 1 , Jiangtao Yu 1 , Chao Wang 1 , Haifeng Wang 2 , Xien Liu 1 , Hongtao Gao 1 , Liantao Xin 1 , Dongzheng Liu 1 , Wanguo Hou 3 , Tianrong Zhan 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2022-04-27 , DOI: 10.1002/adfm.202200951 Lei Tan 1 , Jiangtao Yu 1 , Chao Wang 1 , Haifeng Wang 2 , Xien Liu 1 , Hongtao Gao 1 , Liantao Xin 1 , Dongzheng Liu 1 , Wanguo Hou 3 , Tianrong Zhan 1
Affiliation
The development of a high-performance electrocatalyst for oxygen evolution reaction (OER) is imperative but challenging. Here, a partial sulfidation route to construct Ni2Fe-LDH/FeNi2S4 heterostructure on nickel foam (Ni2Fe-LDH/FeNi2S4/NF) by adjusting the hydrothermal duration is reported. The heterostructures afford abundant hydroxide/sulfide interfaces that offer plentiful active sites, rapid charge and mass transfer, favorable adsorption energy to oxygenated species (OH− and OOH) evidenced by the density functional theory calculations, which synergistically boost the alkaline water oxidation. In the 1.0 m KOH solution, Ni2Fe-LDH/FeNi2S4/NF exhibits an excellent OER catalytic activity with a much smaller overpotential (240 mV) to reach the current density of 100 mA cm−2 than single-phase Ni2Fe-LDH/NF (279 mV) or FeNi2S4/NF (271 mV). More impressively, 2000 cycles of cyclic voltammetry scan for water oxidation results in the formation of a sulfate layer over the catalyst. The corresponding post-catalyst demonstrates better OER activity and durability than the initial one in the alkaline simulated seawater electrolyte. The post-Ni2Fe-LDH/FeNi2S4/NF delivers smaller overpotential (250 mV) at 100 mA cm−2 and longer stability time than the original form (260 mV). The post-formed sulfate passivating layer is responsible for the outstanding corrosion resistance of the salty-water oxidation anode since it can effectively repel chloride.
中文翻译:
NiFe-LDH@FeNi2S4异质结构的部分硫化策略实现高性能水/海水氧化
开发用于析氧反应(OER)的高性能电催化剂势在必行,但具有挑战性。本文报道了通过调整水热持续时间在泡沫镍上构建Ni 2 Fe-LDH/FeNi 2 S 4异质结构(Ni 2 Fe-LDH/FeNi 2 S 4 /NF)的部分硫化路线。异质结构提供了丰富的氢氧化物/硫化物界面,提供了丰富的活性位点、快速的电荷和传质、对含氧物质(OH -和 OOH)的有利吸附能量,密度泛函理论计算证明了这一点,这协同促进了碱性水的氧化。在 1.0 m KOH 溶液中,Ni2 Fe-LDH/FeNi 2 S 4 /NF 表现出优异的 OER 催化活性,与单相 Ni 2 Fe-LDH / NF (279 mV) 或 FeNi 2 S 4 /NF (271 mV)。更令人印象深刻的是,2000 次循环伏安法扫描水氧化导致在催化剂上形成硫酸盐层。相应的后催化剂在碱性模拟海水电解质中表现出比初始催化剂更好的 OER 活性和耐久性。后 Ni 2 Fe-LDH/FeNi 2 S 4 /NF 在 100 mA cm 时提供更小的过电势 (250 mV)-2和比原始形式(260 mV)更长的稳定时间。后形成的硫酸盐钝化层是盐水氧化阳极出色的耐腐蚀性的原因,因为它可以有效地排斥氯化物。
更新日期:2022-04-27
中文翻译:
NiFe-LDH@FeNi2S4异质结构的部分硫化策略实现高性能水/海水氧化
开发用于析氧反应(OER)的高性能电催化剂势在必行,但具有挑战性。本文报道了通过调整水热持续时间在泡沫镍上构建Ni 2 Fe-LDH/FeNi 2 S 4异质结构(Ni 2 Fe-LDH/FeNi 2 S 4 /NF)的部分硫化路线。异质结构提供了丰富的氢氧化物/硫化物界面,提供了丰富的活性位点、快速的电荷和传质、对含氧物质(OH -和 OOH)的有利吸附能量,密度泛函理论计算证明了这一点,这协同促进了碱性水的氧化。在 1.0 m KOH 溶液中,Ni2 Fe-LDH/FeNi 2 S 4 /NF 表现出优异的 OER 催化活性,与单相 Ni 2 Fe-LDH / NF (279 mV) 或 FeNi 2 S 4 /NF (271 mV)。更令人印象深刻的是,2000 次循环伏安法扫描水氧化导致在催化剂上形成硫酸盐层。相应的后催化剂在碱性模拟海水电解质中表现出比初始催化剂更好的 OER 活性和耐久性。后 Ni 2 Fe-LDH/FeNi 2 S 4 /NF 在 100 mA cm 时提供更小的过电势 (250 mV)-2和比原始形式(260 mV)更长的稳定时间。后形成的硫酸盐钝化层是盐水氧化阳极出色的耐腐蚀性的原因,因为它可以有效地排斥氯化物。