当前位置:
X-MOL 学术
›
Commun. Number Theory Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Modular parametrization as Polyakov path integral: cases with CM elliptic curves as target spaces
Communications in Number Theory and Physics ( IF 1.2 ) Pub Date : 2022-04-27 , DOI: 10.4310/cntp.2022.v16.n2.a3 Satoshi Kondo 1 , Taizan Watari 2
Communications in Number Theory and Physics ( IF 1.2 ) Pub Date : 2022-04-27 , DOI: 10.4310/cntp.2022.v16.n2.a3 Satoshi Kondo 1 , Taizan Watari 2
Affiliation
For an elliptic curve $E$ over an abelian extension $k/K$ with CM by $K$ of Shimura type, the L-functions of its $[k:K]$ Galois representations are Mellin transforms of Hecke theta functions; a modular parametrization (surjective map) from a modular curve to $E$ pulls back the $1$-forms on $E$ to give the Hecke theta functions. This article refines the study of our earlier work and shows that certain class of chiral correlation functions in Type II string theory with $[E]_\mathbb{C}$ ($E$ as real analytic manifold) as a target space yield the same Hecke theta functions as objects on the modular curve. The Kähler parameter of the target space $[E]_\mathbb{C}$ in string theory plays the role of the index (partially ordered) set in defining the projective/direct limit of modular curves.
中文翻译:
作为 Polyakov 路径积分的模块化参数化:以 CM 椭圆曲线为目标空间的情况
对于在阿贝尔扩展 $k/K$ 上的椭圆曲线 $E$,CM by $K$ 的 Shimura 类型,其 $[k:K]$ 伽罗瓦表示的 L-函数是 Hecke theta 函数的 Mellin 变换;从模块化曲线到 $E$ 的模块化参数化(满射图)拉回 $E$ 上的 $1$-forms 以提供 Hecke theta 函数。本文改进了我们早期工作的研究,并表明以 $[E]_\mathbb{C}$($E$ 作为实解析流形)为目标空间的 II 型弦论中的某些类手性相关函数产生相同的 Hecke theta 函数作为模曲线上的对象。弦论中目标空间 $[E]_\mathbb{C}$ 的 Kähler 参数在定义模曲线的射影/直接极限时起到了索引(部分有序)集的作用。
更新日期:2022-04-27
中文翻译:
作为 Polyakov 路径积分的模块化参数化:以 CM 椭圆曲线为目标空间的情况
对于在阿贝尔扩展 $k/K$ 上的椭圆曲线 $E$,CM by $K$ 的 Shimura 类型,其 $[k:K]$ 伽罗瓦表示的 L-函数是 Hecke theta 函数的 Mellin 变换;从模块化曲线到 $E$ 的模块化参数化(满射图)拉回 $E$ 上的 $1$-forms 以提供 Hecke theta 函数。本文改进了我们早期工作的研究,并表明以 $[E]_\mathbb{C}$($E$ 作为实解析流形)为目标空间的 II 型弦论中的某些类手性相关函数产生相同的 Hecke theta 函数作为模曲线上的对象。弦论中目标空间 $[E]_\mathbb{C}$ 的 Kähler 参数在定义模曲线的射影/直接极限时起到了索引(部分有序)集的作用。